skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT08, KT09, AND KT10-SERIES GLASS COMPOSITIONS

Technical Report ·
DOI:https://doi.org/10.2172/1014147· OSTI ID:1014147

This report is the fourth in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. The KT09-series of glasses was designed to study the effect of increasing Al{sub 2}O{sub 3} and K{sub 2}O concentrations on the propensity for crystallization of titanium containing phases in high TiO{sub 2} concentration glasses. Earlier work on the KT05-series glasses recommended that the impact of these two components be studied further. Increased Al{sub 2}O{sub 3} concentrations have been shown to improve the properties and performance of high waste loading glasses, and K{sub 2}O has been reported to improve the retention of TiO{sub 2} in silicate glasses. The KT10-series of compositions was designed to evaluate any impacts of the SCIX components at concentrations 50% higher than currently projected.a The glasses were fabricated in the laboratory and characterized to identify crystallization, to verify chemical compositions, to measure viscosity, and to measure durability. Liquidus temperature measurements for the KT10-series glasses are underway and will be reported separately. All but one of the KT08-series glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which had no practical impact on the durability of the glass and is typically found in DWPF-type glasses. The measured Product Consistency Test (PCT) responses for the KT08-series glasses are well predicted by the DWPF models. The viscosities of the KT08-series glasses were generally well predicted by the DWPF model. No unexpected issues were encountered when uranium and thorium were added to the glasses with SCIX components. Increased Al{sub 2}O{sub 3} concentrations were not successful in preventing the formation of iron titanate crystals in the KT09-series glasses. Increased K{sub 2}O concentrations were successful in hindering the formation of iron titanates in some of the glasses after the canister centerline cooled (CCC) heat treatment. However, this result did not apply to all of the CCC versions of the glasses, indicating a compositional dependence of this effect. In addition, high concentrations of K{sub 2}O have been shown to hinder the ability of the DWPF durability and viscosity models to predict the performance of these glasses. The usefulness of increased K{sub 2}O concentrations in preventing the formation of iron titanates may therefore be limited. Further characterization was not performed for the KT09-series glasses since the type of crystallization formed was the characteristic of interest for these compositions. All of the KT10-series glasses were XRD amorphous, regardless of heat treatment. Chemical composition measurements showed that the glasses met the targeted concentrations for each oxide. In general, the measured PCT responses of the KT10-series glasses were well predicted by the DWPF models. The measured, normalized release values for silicon for some of the glasses fell above the 95% confidence interval for the predicted values; however, the PCT responses for these glasses remain considerably lower than that of the benchmark Environmental Assessment (EA) glass. The viscosities of the KT10-series glasses were generally well predicted by the DWPF model. The next step in this study will be to compile all of the data developed and further compare the measured properties and performance with those predicted by the current DWPF Product Composition Control System (PCCS) models. Recommendations will then be made as to which models, if any, may need to be modified in order to accommodate the material from SCIX into DWPF glass production.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC09-08SR22470
OSTI ID:
1014147
Report Number(s):
SRNL-STI-2011-00178; TRN: US1102782
Country of Publication:
United States
Language:
English