skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of mercury control technology for coal-fired systems

Conference ·
OSTI ID:101303

The emission of hazardous air pollutants (air toxics) from various industrial processes has emerged as a major environmental issue that was singled out for particular attention in the Clean Air Act Amendments of 1990. In particular, mercury emissions are the subject of several current EPA studies because of concerns over possible serious effects on human health. Some of those emissions originate in the combustion of coal, which contains trace amounts of mercury, and are likely to be the subject of control requirements in the relatively near future. Data collected by the Department of Energy (DOE) and the Electric Power Research Institute (EPRI) at operating electric-power plants have shown that conventional flue-gas cleanup (FGC) technologies are not very effective in controlling emissions of mercury in general, and are particularly poor at controlling emissions of elemental mercury. This paper gives an overview of research being conducted at Argonne National Laboratory on improving the capture of mercury in flue gas through the use of dry sorbents and/or wet scrubbers. The results and conclusions to date from the Argonne research on dry sorbents can be summarized as follows: lime hydrates, either regular or high-surface-area, are not effective in removing elemental mercury; mercury removals are enhanced by the addition of activated carbon; mercury removals with activated carbon decrease with increasing temperature, larger particle size, and decreasing mercury concentration in the gas; chemical pretreatment (e.g., with sulfur or CaCl{sub 2}) can greatly increase the removal capacity of activated carbon; chemically treated mineral substrates have the potential to be developed into effective and economical mercury sorbents; sorbents treated with different chemicals respond in significantly different ways to changes in flue-gas temperature.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-31-109-ENG-38
OSTI ID:
101303
Report Number(s):
ANL/ES/CP-86595; CONF-950801-7; ON: DE95015707
Resource Relation:
Conference: 210. national meeting of the American Chemical Society (ACS), Chicago, IL (United States), 20-25 Aug 1995; Other Information: PBD: [1995]
Country of Publication:
United States
Language:
English