skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Applications of Atomistic Simulation to Radioactive and Hazardous Waste Glass Formulation Development

Conference ·
OSTI ID:10122514

Glass formulation development depends on an understanding of the effects of glass composition on its processibility and product quality. Such compositional effects on properties in turn depend on the microscopic structure of the glass. Historically, compositional effects on macroscopic properties have been explored empirically, e.g., by measuring viscosity at various glass compositions. The relationship of composition to structure has been studied by microstructural experimental methods. More recently, computer simulation has proved a fruitful complement to these more traditional methods of study. By simulating atomic interaction over a period of time using the molecular dynamics method, a direct picture of the glass structure and dynamics is obtained which can verify existing concepts as well as permit ``measurement`` of quantities inaccessible to experiment. Atomistic simulation can be of particular benefit in the development of waste glasses. As vitrification is being considered for an increasing variety of waste streams, process and product models are needed to formulate compositions for an extremely wide variety of elemental species and composition ranges. The demand for process and product models which can predict over such a diverse composition space requires mechanistic understanding of glass behavior; atomistic simulation is ideally suited for providing this understanding. Moreover, while simulation cannot completely eliminate the need for treatability studies, it can play a role in minimizing the experimentation on (and therefore contact handling of) such materials. This paper briefly reviews the molecular dynamics method, which is the primary atomistic simulation tool for studying glass structure. We then summarize the current state of glass simulation, emphasizing areas of importance for waste glass process/product modeling. At SRS, glass process and product models have been formulated in terms of glass structural concepts.

Research Organization:
Westinghouse Savannah River Co., Aiken, SC (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC09-89SR18035
OSTI ID:
10122514
Report Number(s):
WSRC-MS-95-0057; CONF-950216-34; ON: DE95060092; TRN: 94T00104
Resource Relation:
Conference: Waste management `95,Tucson, AZ (United States),26 Feb - 2 Mar 1995; Other Information: PBD: [1995]
Country of Publication:
United States
Language:
English