skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Disruption of Vessel-Spanning Bubbles with Sloped Fins in Flat-Bottom and 2:1 Elliptical-Bottom Vessels

Technical Report ·
DOI:https://doi.org/10.2172/1009315· OSTI ID:1009315

Radioactive sludge was generated in the K-East Basin and K-West Basin fuel storage pools at the Hanford Site while irradiated uranium metal fuel elements from the N Reactor were being stored and packaged. The fuel has been removed from the K Basins, and currently, the sludge resides in the KW Basin in large underwater Engineered Containers. The first phase to the Sludge Treatment Project being led by CH2MHILL Plateau Remediation Company (CHPRC) is to retrieve and load the sludge into sludge transport and storage containers (STSCs) and transport the sludge to T Plant for interim storage. The STSCs will be stored inside T Plant cells that are equipped with secondary containment and leak-detection systems. The sludge is composed of a variety of particulate materials and water, including a fraction of reactive uranium metal particles that are a source of hydrogen gas. If a situation occurs where the reactive uranium metal particles settle out at the bottom of a container, previous studies have shown that a vessel-spanning gas layer above the uranium metal particles can develop and can push the overlying layer of sludge upward. The major concern, in addition to the general concern associated with the retention and release of a flammable gas such as hydrogen, is that if a vessel-spanning bubble (VSB) forms in an STSC, it may drive the overlying sludge material to the vents at the top of the container. Then it may be released from the container into the cell’s secondary containment system at T Plant. A previous study demonstrated that sloped walls on vessels, both cylindrical coned-shaped vessels and rectangular vessels with rounded ends, provided an effective approach for disrupting a VSB by creating a release path for gas as a VSB began to rise. Based on the success of sloped-wall vessels, a similar concept is investigated here where a sloped fin is placed inside the vessel to create a release path for gas. A key potential advantage of using a sloped fin compared to a vessel with a sloped wall is that a small fin decreases the volume of a vessel available for sludge storage by a very small fraction compared to a cone-shaped vessel. The purpose of this study is to quantify the capability of sloped fins to disrupt VSBs and to conduct sufficient tests to estimate the performance of fins in full-scale STSCs. Experiments were conducted with a range of fin shapes to determine what slope and width were sufficient to disrupt VSBs. Additional tests were conducted to demonstrate how the fin performance scales with the sludge layer thickness and the sludge strength, density, and vessel diameter based on the gravity yield parameter, which is a dimensionless ratio of the force necessary to yield the sludge to its weight.( ) Further experiments evaluated the difference between vessels with flat and 2:1 elliptical bottoms and a number of different simulants, including the KW container sludge simulant (complete), which was developed to match actual K-Basin sludge. Testing was conducted in 5-in., 10-in., and 23-in.-diameter vessels to quantify how fin performance is impacted by the size of the test vessel. The most significant results for these scale-up tests are the trend in how behavior changes with vessel size and the results from the 23-in. vessel. The key objective in evaluating fin performance is to determine the conditions that minimize the volume of a VSB when disruption occurs because this reduces the potential for material inside the STSC from being released through vents.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1009315
Report Number(s):
PNNL-19345 Rev 0; 830403000; TRN: US1101566
Country of Publication:
United States
Language:
English