skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV

Journal Article · · Radiation Protection Dosimetry
DOI:https://doi.org/10.1093/rpd/ncq380· OSTI ID:1009124

The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection (ICRP) guidance.

Research Organization:
Oak Ridge Y-12 Plant (Y-12), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Defense Programs (DP)
DOE Contract Number:
DE-AC05-00OR22800
OSTI ID:
1009124
Report Number(s):
RCO-2010-001; TRN: US1101381
Journal Information:
Radiation Protection Dosimetry, Journal Name: Radiation Protection Dosimetry; ISSN 0144--8420
Country of Publication:
United States
Language:
English