skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Physics of the Gas Attenuator for the Linac Coherent Light Source (LCLS)

Technical Report ·
DOI:https://doi.org/10.2172/1004930· OSTI ID:1004930

A systematic assessment of a variety of physics issues affecting the performance of the LCLS X-ray beam attenuator is presented. Detailed analysis of the gas flow in the gas attenuator and in the apertures is performed. A lot of attention is directed towards the gas ionization and heating by intense X-ray pulses. The role of these phenomena in possible deviations of the attenuation coefficient from its 'dialed in' value is evaluated and found small in most cases. Other sources of systematic and statistical errors are also discussed. The regimes where the errors may reach a few percent correspond to the lower X-ray energies (less than 2 keV) and highest beam intensities. Other effects discussed include chemical interaction of the gas with apertures, shock formation in the transonic flow in the apertures of the attenuator, generation of electromagnetic wakes in the gas, and head-to-tail variation of the attenuation caused by the ionization of gas or solid. Possible experimental tests of the consistency of the physics assumptions used in the concept of the gas attenuator are discussed. Interaction of X-rays with the solid attenuator (that will be used at higher X-ray energies, from 2.5 to 8 keV) is considered and thermo-mechanical effects caused by the beam heating are evaluated. Wave-front distortions induced by non-uniform heating of both the solid and the gas are found to be small. An overall conclusion drawn from the analysis presented is that the attenuator will be a reliable and highly versatile device, provided that some caution is exercised in its use for highest beam intensities at lowest X-ray energies.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC02-76SF00515
OSTI ID:
1004930
Report Number(s):
SLAC-TN-10-029; TRN: US1101060
Country of Publication:
United States
Language:
English