skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Measurements of enhanced performance in an indirect drive inertial confinement fusion experiment when reducing the contact area of the capsule support

    Experimental results from indirectly driven inertial confinement fusion experiments testing the performance gained from using an alternate capsule tent support are reported. The polar tent describes an alternate geometry for the thin membrane used to support the Deuterium–Tritium (DT) filled capsule. In this work, the contact area is reduced by 23 times by locating the tent support close to the poles of the capsule. The polar tent experiments are repeats of previous 3 shock 1.63 MJ, 400 TW high foot experiments and use a 165 μm thick silicon doped carbon hydrogen plastic (CH) shell. Using the polar tent support, wemore » report a DT neutron yield of 1.07 ×1016, 76% higher than the expected YDT∝V7.7 scaling. This is, at the time of writing, the highest neutron yield to date from a CH shell implosion. Furthermore, we find that the inferred pressure when using the polar tent is significantly above the model based on analytic scaling even when accounting for tent effects. Analysis of x-ray and neutron images shows the reduction of lobes produced by nominal tent features. The reduction of these features in the polar tent experiments leads to decreased low mode (P2 and P4) asymmetry compared to the nominal tent results.« less
  2. A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules

    In indirectly driven Inertial Confinement Fusion implosions conducted on the National Ignition Facility (NIF), the imploding capsule is supported in a laser-heated radiation enclosure (called a “hohlraum”) by a pair of very thin (~15–45 nm) plastic films (referred to as a “tent”). Even though the thickness of these tents is a small fraction of that of the spherical capsule ablator (~165 μm), both numerical simulations as well as experiments indicate that this capsule support mechanism results in a large areal density (ρR) perturbation on the capsule surface at the contact point where the tent departs from the capsule. As amore » result, during deceleration of the deuterium-tritium (DT) fuel layer, a jet of the dense ablator material penetrates and cools the fuel hot spot, significantly degrading the neutron yield (resulting in only ~10%–20% of the unperturbed 1-D yield). In this article, we present a hypothesis and supporting design simulations of a new “polar contact” tent support system, which reduces the contact area between the tent and the capsule and results in a significant improvement in the capsule performance. Simulations predict a ~70% increase in neutron yield over that for an implosion with a traditional tent support. Overall, an initial demonstration experiment was conducted on the NIF and produced highest ever recorded primary DT neutron yield among all layered DT implosions with plastic ablators on the NIF, though more experiments are needed to comprehensively study the effect of the polar tent on implosion performance.« less
  3. Review of hydro-instability experiments with alternate capsule supports in indirect-drive implosions on the National Ignition Facility

    Hydrodynamic instability growth of capsule support membranes (or “tents”) has been recognized as one of the major contributors to the performance degradation in high-compression plastic capsule implosions at the National Ignition Facility (NIF). The capsules were supported by tents because the nominal 10-μm diameter fill tubes were not strong enough to support capsules by themselves in indirect-drive implosions on NIF. After it was recognized that the tents had a significant impact of implosion's stability, new alternative support methods were investigated. While some of these methods completely eliminated tent, other concepts still used tents, but concentrated on mitigating their impact. Themore » tent-less methods included “fishing pole” reinforced fill tubes, cantilevered fill tubes, and thin-wire “tetra cage” supports. In the “fishing pole” concept, a 10-μm fill tube was inserted inside 30-μm fill tube for extra support with the connection point located 300 μm away from the capsule surface. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by up to 300 μm from the capsule surfaces. In the “tetra-cage” concept, 2.5-μm thick wires (carbon nanotube yarns) were used to support a capsule. Other concepts used “polar tents” and a “foam-shell” to mitigate the effects of the tents. The “polar tents” had significantly reduced contact area between the tents and the capsule compared to the nominal tents. In the “foam-shell” concept, a 200-μm thick, 30 mg/cc SiO2 foam layer was used to offset the tents away from the capsule surface in an attempt to mitigate their effects. These concepts were investigated in x-ray radiography experiments and compared with perturbations from standard tent support. The measured perturbations in the “fishing pole,” cantilevered fill tube, and “tetra-cage” concepts compared favorably with (were smaller than) nominal tent perturbations and were recommended for further testing for feasibility in layered DT implosions. The “polar tents” were tested in layered DT implosions with a relatively-stable “high-foot” drive showing an improvement in neutron yield in one experiment compared to companion implosions with nominal tents. Furthermore, this article reviews and summarizes recent experiments on these alternate capsule support concepts. In addition, the concept of magnetic levitation is also discussed.« less

Search for:
All Records
Author / Contributor
0000000348950198

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization