skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Projected land ice contributions to twenty-first-century sea level rise

    The land ice contribution to global mean sea level rise has not yet been predicted using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models, but primarily used previous-generation scenarios and climate models, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios using statistical emulation of the ice sheet and glacier models. In this work, we find that limiting global warmingmore » to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.« less
  2. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models

    Projection of the contribution of ice sheets to sea level change as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) takes the form of simulations from coupled ice sheet–climate models and stand-alone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea level change projections to be performed with stand-alone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertaintymore » in projected sea level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice–ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 stand-alone ice sheet simulations, document the experimental framework and implementation, and present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups.« less
  3. Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets

    Projections of the sea level contribution from the Greenland and Antarctic ice sheets rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous CMIP5 effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls withinmore » the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.« less
  4. Regional grid refinement in an Earth system model: impacts on the simulated Greenland surface mass balance

    In this study, the resolution dependence of the simulated Greenland ice sheet surface mass balance (GrIS SMB) in the variable-resolution Community Earth System Model (VR-CESM) is investigated. Coupled atmosphere–land simulations are performed on two regionally refined grids over Greenland at 0.5° (~55 km) and 0.25° (~28 km), maintaining a quasi-uniform resolution of 1° (~111 km) over the rest of the globe. On the refined grids, the SMB in the accumulation zone is significantly improved compared to airborne radar and in situ observations, with a general wetting (more snowfall) at the margins and a drying (less snowfall) in the interior GrIS.more » Total GrIS precipitation decreases with resolution, which is in line with best-available regional climate model results. In the ablation zone, CESM starts developing a positive SMB bias with increased resolution in some basins, notably in the east and the north. The mismatch in ablation is linked to changes in cloud cover in VR-CESM, and a reduced effectiveness of the elevation classes subgrid parametrization in CESM. Overall, our pilot study introduces VR-CESM as a new tool in the cryospheric sciences, which could be used to dynamically downscale SMB in scenario simulations and to force dynamical ice sheet models through the CESM coupling framework.« less
  5. Improving the Representation of Polar Snow and Firn in the Community Earth System Model

    Abstract In Earth system models, terrestrial snow is usually modeled by the land surface component. In most cases, these snow models have been developed with an emphasis on seasonal snow. Questions about future sea level rise, however, prompt the need for a realistic representation of perennial snow, as snow processes play a key role in the mass balance of glaciers and ice sheets. Here we enhance realism of modeled polar snow in the Community Land Model (CLM), the land component of the Community Earth System Model (CESM), by implementing (1) new parametrizations for fresh snow density, destructive metamorphism, and compactionmore » by overburden pressure, (2) by allowing for deeper snow packs, and (3) by introducing drifting snow compaction, with a focus on the ice sheet interior. Comparison with Greenlandic and Antarctic snow density observations show that the new physics improve model skill in predicting firn and near‐surface density in the absence of melt. Moreover, compensating biases are removed and spurious subsurface melt rates at ice sheets are eliminated. The deeper snow pack enhances refreezing and allows for deeper percolation, raising ice temperatures up to 15°C above the skin temperature.« less
  6. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

    Abstract. We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet, deploying sub-kilometer resolution around the grounding line since coarser resolution results in substantial underestimation of the response. Each of the simulations begins with a geometry and velocity close to present-day observations, and evolves according to variation in meteoric ice accumulation rates and oceanic ice shelf melt rates. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1more » and A1B emissions scenarios, to spatially uniform melt rate anomalies that remove most of the ice shelves over a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions and ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Within the Amundsen Sea Embayment the largest single source of variability is the onset of sustained retreat in Thwaites Glacier, which can triple the rate of eustatic sea level rise.« less
  7. Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting: AMOC PROJECTIONS FOR WARMING AND GIS MELT

    The most recent Intergovernmental Panel on Climate Change assessment report concludes that the Atlantic Meridional Overturning Circulation (AMOC) could weaken substantially but is very unlikely to collapse in the 21st century. However, the assessment largely neglected Greenland Ice Sheet (GrIS) mass loss, lacked a comprehensive uncertainty analysis, and was limited to the 21st century. Here in a community effort, improved estimates of GrIS mass loss are included in multicentennial projections using eight state-of-the-science climate models, and an AMOC emulator is used to provide a probabilistic uncertainty assessment. We find that GrIS melting affects AMOC projections, even though it is ofmore » secondary importance. By years 2090–2100, the AMOC weakens by 18% [-3%, -34%; 90% probability] in an intermediate greenhouse-gas mitigation scenario and by 37% [-15%, -65%] under continued high emissions. Afterward, it stabilizes in the former but continues to decline in the latter to -74% [+4%, -100%] by 2290–2300, with a 44% likelihood of an AMOC collapse. This result suggests that an AMOC collapse can be avoided by CO2 mitigation.« less
  8. Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting

    The most recent Intergovernmental Panel on Climate Change assessment report concludes thatthe Atlantic Meridional Overturning Circulation (AMOC) could weaken substantially but is very unlikely tocollapse in the 21st century. However, the assessment largely neglected Greenland Ice Sheet (GrIS)mass loss, lacked a comprehensive uncertainty analysis, and was limited to the 21st century. Here in acommunity effort, improved estimates of GrIS mass loss are included in multicentennial projections usingeight state-of-the-science climate models, and an AMOC emulator is used to provide a probabilisticuncertainty assessment. We find that GrIS melting affects AMOC projections, even though it is of secondaryimportance. By years 2090–2100, the AMOCmore » weakens by 18% [3%, 34%; 90% probability] in an intermediategreenhouse-gas mitigation scenario and by 37% [15%, 65%] under continued high emissions. Afterward, itstabilizes in the former but continues to decline in the latter to 74% [+4%, 100%] by 2290–2300, with a 44%likelihood of an AMOC collapse. This result suggests that an AMOC collapse can be avoided by CO2mitigation.« less
  9. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, when compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging -0.80 ± 0.39 m yr-1 between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. Furthermore, if current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less

Search for:
All Records
Author / Contributor
0000000346627565

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization