skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Buffer/absorber interface recombination reduction and improvement of back-contact barrier height in CdTe solar cells

    Electronic properties of a CdTe solar cell are reported using temperature-dependent capacitance spectroscopy and current-voltage characteristics, the latter in dark and illuminated conditions. The baseline solar cell material stack investigated is comprised of soda-lime-glass/SnO2:F/SnO2/CdS:O-buffer/CdTe-absorber/Cu/Au. Properties are compared with CdTe solar cells in which the back surface was hydroiodic acid etched, before the back-contact formation, and a CdTe device in which Mg-doped ZnO (MZO) replaces buffer layer CdS. Reduced back-contact barrier height and grain boundary barrier height are observed in the HI treated CdTe cell. As a result, improved device performance in the MZO-based CdTe device is attributed to reduced emitter/absorbermore » interface recombination when using the MZO window layer.« less
  2. Factors influencing photoluminescence and photocarrier lifetime in CdSeTe/CdMgTe double heterostructures

    CdSeTe/CdMgTe double heterostructures were produced with both n-type and unintentionally doped absorber layers. Measurements of the dependence of photoluminescence intensity on excitation intensity were carried out, as well as measurements of time-resolved photoluminescence decay after an excitation pulse. It was found that decay times under very low photon injection conditions are dominated by a non-radiative Shockley-Read-Hall process described using a recombination center with an asymmetric capture cross section, where the cross section for holes is larger than that for electrons. As a result of the asymmetry, the center effectively extends photoluminescence decay by a hole trapping phenomenon. A reduction inmore » electron capture cross section appeared at doping densities over 1016cm-3. An analysis of the excitation intensity dependence of room temperature photoluminescence revealed a strong relationship with doping concentration. Here, this allows estimates of the carrier concentration to be made through a non-destructive optical method. Iodine was found to be an effective n-type dopant for CdTe, allowing controllable carrier concentrations without an increased rate of non-radiative recombination.« less
  3. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    Heterostructures with CdTe and CdTe1-xSex (x ~ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ~ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. Here, the dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects havemore » a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ~6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.« less

Search for:
All Records
Author / Contributor
0000000342359778

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization