skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. The Proton Density of States in Confined Water (H2O)

    The hydrogen density of states (DOS) in confined water has been probed by inelastic neutron scattering spectra in a wide range of its P–T phase diagram. The liquid–liquid transition and the dynamical crossover from the fragile (super-Arrhenius) to strong (Arrhenius) glass forming behavior have been studied, by taking into account the system polymorphism in both the liquid and amorphous solid phases. The interest is focused in the low energy region of the DOS ( E < 10 meV) and the data are discussed in terms of the energy landscape (local minima of the potential energy) approach. In this latest research,more » we consider a unit scale energy (EC) linked to the water local order governed by the hydrogen bonding (HB). All the measured spectra, scaled according to such energy, evidence a universal power law behavior with different exponents ( γ ) in the strong and fragile glass forming regions, respectively. In the first case, the DOS data obey the Debye squared-frequency law, whereas, in the second one, we obtain a value predicted in terms of the mode-coupling theory (MCT) ( γ ≃ 1.6 ).« less
  2. Some Aspects of the Liquid Water Thermodynamic Behavior: From The Stable to the Deep Supercooled Regime

    Liquid water is considered to be a peculiar example of glass forming materials because of the possibility of giving rise to amorphous phases with different densities and of the thermodynamic anomalies that characterize its supercooled liquid phase. In the present work, literature data on the density of bulk liquid water are analyzed in a wide temperature-pressure range, also including the glass phases. A careful data analysis, which was performed on different density isobars, made in terms of thermodynamic response functions, like the thermal expansion αP and the specific heat differences CP-CV, proves, exclusively from the experimental data, the thermodynamic consistencemore » of the liquid-liquid transition hypothesis. The study confirms that supercooled bulk water is a mixture of two liquid “phases”, namely the high density (HDL) and the low density (LDL) liquids that characterize different regions of the water phase diagram. Furthermore, the CP-CV isobars behaviors clearly support the existence of both a liquid–liquid transition and of a liquid–liquid critical point.« less
  3. Some considerations on the water polymorphism and the liquid-liquid transition by the density behavior in the liquid phase

    The bulk liquid water density data (ρ) are studied in a very large temperature pressure range including also the glass phases. A thorough analysis of their isobars, together with the suggestions of recent thermodynamical studies, gives evidence of two crossovers at T* and P* above which the hydrogen bond interaction is unable to arrange the tetrahedral network that is at the basis of the liquid polymorphism giving rise to the low density liquid (LDL). The curvatures of these isobars, as a function of T, are completely different: concave below P* (where maxima are) and convex above. In both the cases,more » a continuity between liquid and glass is observed with P* as the border of the density evolution toward the two different polymorphic glasses (low and high density amorphous). The experimental data of the densities of these two glasses also show a markedly different pressure dependence. Here, on the basis of these observations in bulk water and by considering a recent study on the growth of the LDL phase, by decreasing temperature, we discuss the water liquid-liquid transition and evaluate the isothermal compressibility inside the deep supercooled regime. Such a quantity shows an additional maximum that is pressure dependent that under ambient conditions agrees with a recent X-ray experiment. In particular, the present analysis suggests the presence of a liquid-liquid critical point located at about 180 MPa and 197 K.« less
  4. Specific Heat and Transport Functions of Water

    Numerous water characteristics are essentially ascribed to its peculiarity to form strong hydrogen bonds that become progressively more stable on decreasing the temperature. However, the structural and dynamical implications of the molecular rearrangement are still subject of debate and intense studies. In this work, we observe that the thermodynamic characteristics of liquid water are strictly connected to its dynamic characteristics. In particular, we compare the thermal behaviour of the isobaric specific heat of water, measured in different confinement conditions at atmospheric pressure (and evaluated by means of theoretical studies) with its configurational contribution obtained from the values of the measuredmore » self-diffusion coefficient through the use of the Adam–Gibbs approach. Our results confirm the existence of a maximum in the specific heat of water at about 225 K and indicate that especially at low temperature the configurational contributions to the entropy are dominant.« less
  5. Some considerations on the transport properties of water-glycerol suspensions

    We study the self-diffusion coefficient and viscosity of a water-glycerol mixture for several glycerol molar fractions as a function of temperature well inside the metastable supercooled regime. We perform NMR experiments and verify that the system has at different concentration a fragile-to-strong crossover accompanied by the violation of the Stokes-Einstein relation. We observe that the crossover temperature depends on the water amount. Studying the fractional representation of the Stokes-Einstein relation, we find that in these systems dynamical arrest does not exhibit criticality and the transport parameters have a universal behavior.
  6. NMR spectroscopy study of local correlations in water

  7. Dynamical properties of water-methanol solutions


Search for:
All Records
Author / Contributor
000000034098174X

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization