skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction

    Here, the response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of ~80 GPa. Ultrafast x-ray diffraction using ~100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release.more » We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events.« less
  2. Direct imaging of ultrafast lattice dynamics

    Under rapid high-temperature, high-pressure loading, lattices exhibit complex elastic-inelastic responses. The dynamics of these responses are challenging to measure experimentally because of high sample density and extremely small relevant spatial and temporal scales. In this work, we use an x-ray free-electron laser providing simultaneous in situ direct imaging and x-ray diffraction to spatially resolve lattice dynamics of silicon under high–strain rate conditions. We present the first imaging of a new intermediate elastic feature modulating compression along the axis of applied stress, and we identify the structure, compression, and density behind each observed wave. The ultrafast probe x-rays enabled time-resolved characterizationmore » of the intermediate elastic feature, which is leveraged to constrain kinetic inhibition of the phase transformation between 2 and 4 ns. These results not only address long-standing questions about the response of silicon under extreme environments but also demonstrate the potential for ultrafast direct measurements to illuminate new lattice dynamics.« less
  3. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion

    Diamond formation in polystyrene (C8H8)n, which is laser-compressed and heated to conditions around 150 GPa and 5000 K, has recently been demonstrated in the laboratory [Kraus et al., Nat. Astron. 1, 606-611 (2017)]. Here, we show an extended analysis and comparison to first-principles simulations of the acquired data and their implications for planetary physics and inertial confinement fusion. Moreover, we discuss the advanced diagnostic capabilities of adding high-quality small angle X-ray scattering and spectrally resolved X-ray scattering to the platform, which shows great prospects of precisely studying the kinetics of chemical reactions in dense plasma environments at pressures exceeding 100more » GPa.« less
  4. A single-shot spatial chirp method for measuring initial AC conductivity evolution of femtosecond laser pulse excited warm dense matter

    To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.
  5. The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS

    We describe the phase-contrast imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 fs. It was specifically designed for studies relevant to high-energy-density science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.

Search for:
All Records
Author / Contributor
0000000320383064

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization