skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize

    Not provided.
  2. A synthesis of transcriptomic surveys to dissect the genetic basis of C4 photosynthesis

    C4 photosynthesis is used by only three percent of all flowering plants, but explains a quarter of global primary production, including some of the worlds’ most important cereals and bioenergy grasses. Recent advances in our understanding of C4 development can be attributed to the application of comparative transcriptomics approaches that has been fueled by high throughput sequencing. Global surveys of gene expression conducted between different developmental stages or on phylogenetically closely related C3 and C4 species are providing new insights into C4 function, development and evolution. Importantly, through co-expression analysis and comparative genomics, these studies help define novel candidate genesmore » that transcend traditional genetic screens. In this review, we briefly summarize the major findings from recent transcriptomic studies, compare and contrast these studies to summarize emerging consensus, and suggest new approaches to exploit the data. Lastly, we suggest using Setaria viridis as a model system to relieve a major bottleneck in genetic studies of C4 photosynthesis, and discuss the challenges and new opportunities for future comparative transcriptomic studies.« less
  3. Cross species selection scans identify components of C 4 photosynthesis in the grasses

    Not provided.
  4. Sparse panicle1 is required for inflorescence development inSetaria viridis and maize

    Setaria viridis is a rapid-life-cycle model panicoid grass. Here, to identify genes that may contribute to inflorescence architecture and thus have the potential to influence grain yield in related crops such as maize, we conducted an N-nitroso-N-methylurea (NMU) mutagenesis of S. viridis and screened for visible inflorescence mutant phenotypes. Of the approximately 2,700 M2 families screened, we identified four recessive sparse panicle mutants (spp1-spp4) characterized by reduced and uneven branching of the inflorescence. To identify the gene underlying the sparse panicle1 (spp1) phenotype, we performed bulked segregant analysis and deep sequencing to fine map it to an approximately 1 Mbmore » interval. Within this interval, we identified disruptive mutations in two genes. Complementation tests between spp1 and spp3 revealed they were allelic, and deep sequencing of spp3 identified an independent disruptive mutation in SvAUX1 (AUXIN1), one of the two genes in the ~1 Mb interval and the only gene disruption shared between spp1 and spp3. SvAUX1 was found to affect both inflorescence development and root gravitropism in S. viridis. A search for orthologous mutant alleles in maize confirmed a very similar role of ZmAUX1 in maize, which highlights the utility of S. viridis in accelerating functional genomic studies in maize.« less

Search for:
All Records
Author / Contributor
0000000311332716

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization