skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Aerosols from anthropogenic and biogenic sources and their interactions – modeling aerosol formation, optical properties, and impacts over the central Amazon basin

    The Green Ocean Amazon experiment – GoAmazon 2014–2015 – explored the interactions between natural biogenic forest emissions from central Amazonia and urban air pollution from Manaus. Previous GoAmazon 2014–2015 studies showed that nitrogen oxide (NOx = NO + NO2) and sulfur oxide (SOx) emissions from Manaus strongly interact with biogenic volatile organic compounds (BVOCs), affecting secondary organic aerosol (SOA) formation. In previous studies, ground-based and aircraft measurements provided evidence of SOA formation and strong changes in aerosol composition and properties. Aerosol optical properties also evolve, and their impacts on the Amazonian ecosystem can be significant. As particles age, some processes,more » such as SOA production, black carbon (BC) deposition, particle growth and the BC lensing effect change the aerosol optical properties, affecting the solar radiation flux at the surface. This study analyzes data and models SOA formation using the Weather Research and Forecasting with Chemistry (WRF-Chem) model to assess the spatial variability in aerosol optical properties as the Manaus plumes interact with the natural atmosphere. The following aerosol optical properties are investigated: single scattering albedo (SSA), asymmetry parameter (gaer), absorption Ångström exponent (AAE) and scattering Ångström exponent (SAE). These simulations were validated using ground-based measurements at three experimental sites, namely the Amazon Tall Tower Observatory – ATTO (T0a), downtown Manaus (T1), Tiwa Hotel (T2) and Manacapuru (T3), as well as the U.S. Department of Energy (DOE) Gulfstream 1 (G-1) aircraft flights. WRF-Chem simulations were performed over 7 d during March 2014. Results show a mean biogenic SOA (BSOA) mass enrichment of 512 % at the T1 site, 450 % in regions downwind of Manaus, such as the T3 site, and 850 % in areas north of the T3 site in simulations with anthropogenic emissions. The SOA formation is rather fast, with about 80 % of the SOA mass produced in 3–4 h. Comparing the plume from simulations with and without anthropogenic emissions, SSA shows a downwind reduction of approximately 10 %, 11 % and 6 % at the T1, T2 and T3 sites, respectively. Other regions, such as those further downwind of the T3 site, are also affected. The gaer values increased from 0.62 to 0.74 at the T1 site and from 0.67 to 0.72 at the T3 site when anthropogenic emissions are active. During the Manaus plume-aging process, a plume tracking analysis shows an increase in SSA from 0.91 close to Manaus to 0.98 160 km downwind of Manaus as a result of SOA production and BC deposition.« less
  2. Mixing states of Amazon basin aerosol particles transported over long distances using transmission electron microscopy

    The Amazon basin is important for understanding the global climate because of its carbon cycle and as a laboratory for obtaining basic knowledge of the continental background atmosphere. Aerosol particles play an important role in the climate and weather, and knowledge of their compositions and mixing states is necessary to understand their influence on the climate. For this study, we collected aerosol particles from the Amazon basin during the Green Ocean Amazon (GoAmazon2014/5) campaign (February to March 2014) at the T3 site, which is located about 70 km from Manaus, and analyzed them using transmission electron microscopy (TEM). TEM has bettermore » spatial resolution than other instruments, which enables us to analyze the occurrences of components that attach to or are embedded within other particles. Based on the TEM results of more than 10 000 particles from several transport events, this study shows the occurrences of individual particles including compositions, size distributions, number fractions, and possible sources of materials that mix with other particles. Aerosol particles during the wet season were from both natural sources such as the Amazon forest, Saharan desert, Atlantic Ocean, and African biomass burning and anthropogenic sources such as Manaus and local emissions. These particles mix together at an individual particle scale. The number fractions of mineral dust and sea-salt particles increased almost 3-fold when long-range transport (LRT) from the African continent occurred. Nearly 20 % of mineral dust and primary biological aerosol particles had attached sea salts on their surfaces. Sulfates were also internally mixed with sea-salt and mineral dust particles. The TEM element mapping images showed that several components with sizes of hundreds of nanometers from different sources commonly occur within individual LRT aerosol particles. We conclude that many aerosol particles from natural sources change their compositions by mixing during transport. The compositions and mixing states of these particles after emission result in changes in their hygroscopic and optical properties and should be considered when assessing their effects on climate.« less
  3. Mixing states of Amazon-basin aerosol particles transported over long distances using transmission electron microscopy

    The Amazon basin is important for understanding the global climate both because of its carbon cycle and as a laboratory for obtaining basic knowledge of the continental background atmosphere. Aerosol particles play an important role in the climate and weather, and knowledge of their compositions and mixing states is necessary to understand their influence on the climate. For this study, we collected aerosol particles from the Amazon basin during the Green Ocean Amazon (GoAmazon2014/5) campaign (February to March 2014) at the T3 site, which locates about 70 km from Manaus, and analyzed using transmission electron microscopy (TEM). TEM has bettermore » spatial resolution than other instruments, which enables us to analyse the occurrences of components that attach to or are embedded within other particles. Based on the TEM results of more than 10,000 particles from several transport events, this study shows the occurrences of individual particles including compositions, size distributions, number fractions, and possible sources of materials that mix with other particles. Aerosol particles during the wet season were from both natural sources such as the Amazon forest, Saharan desert, Atlantic Ocean, and African biomass burning and anthropogenic sources such as Manaus and local emissions. These particles mix together at an individual particle scale. The number fractions of mineral dust and sea-salt particles increased almost three-fold when long-range transport (LRT) from the African continent occurred. Nearly 20 % of mineral dust and primary biological aerosol particles attached sea salts on their surfaces. Sulfates were also internally mixed with sea-salt and mineral dust particles. The TEM element mapping images showed that several components with sizes of hundreds of nanometres from different sources commonly occur within individual LRT aerosol particles. We conclude that many aerosol particles from natural sources change their compositions by mixing during transport. The compositions and mixing states of these particles after emission result in changes in their hygroscopic and optical properties and should be considered when assessing their effects on climate.« less
  4. Fungal spores as a source of sodium salt particles in the Amazon basin

    In the Amazon basin, particles containing mixed sodium salts are routinely observed and are attributed to marine aerosols transported from the Atlantic Ocean. Using chemical imaging analysis, we show that, during the wet season, fungal spores emitted by the forest biosphere contribute at least 30% (by number) to sodium salt particles in the central Amazon basin. Hydration experiments indicate that sodium content in fungal spores governs their growth factors. Modeling results suggest that fungal spores account for ~69% (31-95%) of the total sodium mass during the wet season and that their fractional contribution increases during nighttime. Contrary to common assumptionsmore » that sodium-containing aerosols originate primarily from marine sources, our results suggest that locally-emitted fungal spores contribute substantially to the number and mass of coarse particles containing sodium. Hence, their role in cloud formation and contribution to salt cycles and the terrestrial ecosystem in the Amazon basin warrant further consideration.« less
  5. Urban influence on the concentration and composition of submicron particulate matter in central Amazonia

    Abstract. An understanding of how anthropogenic emissions affect the concentrations and composition of airborne particulate matter (PM) is fundamental to quantifying the influence of human activities on climate and air quality. The central Amazon Basin, especially around the city of Manaus, Brazil, has experienced rapid changes in the past decades due to ongoing urbanization. Herein, changes in the concentration and composition of submicron PM due to pollution downwind of the Manaus metropolitan region are reported as part of the GoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a suite of other gas- and particle-phase instruments were deployed atmore » the T3 research site, 70km downwind of Manaus, during the wet season. At this site, organic components represented 79±7% of the non-refractory PM1 mass concentration on average, which was in the same range as several upwind sites. However, the organic PM1 was considerably more oxidized at T3 compared to upwind measurements. Positive-matrix factorization (PMF) was applied to the time series of organic mass spectra collected at the T3 site, yielding three factors representing secondary processes (73±15% of total organic mass concentration) and three factors representing primary anthropogenic emissions (27±15%). Fuzzy c-means clustering (FCM) was applied to the afternoon time series of concentrations of NOy, ozone, total particle number, black carbon, and sulfate. Four clusters were identified and characterized by distinct air mass origins and particle compositions. Two clusters, Bkgd-1 and Bkgd-2, were associated with background conditions. Bkgd-1 appeared to represent near-field atmospheric PM production and oxidation of a day or less. Bkgd-2 appeared to represent material transported and oxidized for two or more days, often with out-of-basin contributions. Two other clusters, Pol-1 and Pol-2, represented the Manaus influence, one apparently associated with the northern region of Manaus and the other with the southern region of the city. A composite of the PMF and FCM analyses provided insights into the anthropogenic effects on PM concentration and composition. The increase in mass concentration of submicron PM ranged from 25% to 200% under polluted compared with background conditions, including contributions from both primary and secondary PM. Furthermore, a comparison of PMF factor loadings for different clusters suggested a shift in the pathways of PM production under polluted conditions. Nitrogen oxides may have played a critical role in these shifts. Increased concentrations of nitrogen oxides can shift pathways of PM production from HO2-dominant to NO-dominant as well as increase the concentrations of oxidants in the atmosphere. Consequently, the oxidation of biogenic and anthropogenic precursor gases as well as the oxidative processing of preexisting atmospheric PM can be accelerated. This combined set of results demonstrates the susceptibility of atmospheric chemistry, air quality, and associated climate forcing to anthropogenic perturbations over tropical forests.« less
  6. Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia

    Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less
  7. Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest

    The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two intensive operating periods (IOP1 and IOP2) that took place during the wet and dry seasons of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional- and continental-scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, an indicator of physical state, was measured in real time at ground level using an impactor apparatus. Micrographs collected by transmission electron microscopymore » confirmed that liquid particles adhered, while nonliquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves. When the apparatus RH matched ambient RH, 95 % of the particles adhered as a campaign average. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, produces liquid PM over this tropical forest. During periods of anthropogenic influence, by comparison, the rebound fraction dropped to as low as 60 % at 95 % RH. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of nonliquid PM at high RH correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70 % of the variance in the observed rebound fractions. Anthropogenic influences can contribute to the presence of nonliquid PM in the atmospheric particle population through the combined effects of molecular species that increase viscosity when internally mixed with background PM and increased concentrations of nonliquid anthropogenic particles in external mixtures of anthropogenic and biogenic PM.« less
  8. Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest

    The occurrence of non-liquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two Intensive Operating Periods (IOP1 and IOP2) that took place during the wet and dry seasons, respectively, of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional and continental scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, which is an indicator of the mix of physical states in a sampled particle population, was measured in real time atmore » ground level using an impactor apparatus. Micrographs collected by transmission electron microscopy confirmed that liquid particles adhered while non-liquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves. When the apparatus RH matched ambient RH, 95% of the particles were liquid as a campaign average, although this percentage dropped to as low as 60% during periods of anthropogenic influence. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, was the largest source of liquid PM. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of non-liquid PM correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70% of the variance in the observed rebound fractions. Lastly, anthropogenic influences appear to favor non-liquid PM by providing molecular species that increase viscosity when internally mixed with background PM, by contributing non-liquid particles in external mixtures of PM, and a by combination of these effects under real-world conditions.« less

Search for:
All Records
Author / Contributor
0000000311057603

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization