skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Curvature and confinement effects on chiral liquid crystal morphologies

    Simulations of chiral LCs under toroidal confinement explore the free energy landscape of forming new morphologies that can be tuned through material properties and confinement geometry.
  2. Directing the far-from-equilibrium assembly of nanoparticles in confined liquid crystals by hydrodynamic fields

    The assembly of nematic colloids relies on long-range elastic interactions that can be manipulated through external stimuli. Confinement and the presence of a hydrodynamic field alter the defect structures and the energetic interactions between the particles. Here, the assembly landscape of nanoparticles embedded in a nematic liquid crystal confined in a nanochannel under a pressure-driven flow is determined. The dynamics of the liquid crystal tensor alignment field is determined through a Poisson-Bracket framework, namely the Stark–Lubensky equations, coupled with the zero-Reynolds momentum equations and the liquid crystal Landau-de Gennes free energy functional. A second order semi-implicit time integration and amore » three-dimensional Galerkin finite element method are used to resolve flow and nematic fields under several conditions. In general, the zero Reynolds flow displaces the defects around the particles in the upstream direction and renders the surface anchoring ineffective when the flow strength dominates over the nematic elasticity. More importantly, the potential of mean force for particle assembly is non-monotonic independent of surface anchoring. Our results show that the confinement length scale determines the repulsion/attraction transition between colloids, while the flow strength modifies the static defect structure surrounding the particles and determines the magnitude of the energetic barrier for successful assembly. In the attractive regime, the particles move at different rates through the nematic until one particle eventually catches up with the other. This process occurs against or along the direction of flow depending on the flow strength. Ultimately, these results provide a template for engineering and controlling the transport and assembly of nanoparticles under far-from equilibrium conditions in anisotropic media.« less
  3. Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders

    The structure and dynamics of confined suspensions of particles of arbitrary shape are of interest in multiple disciplines from biology to engineering. Theoretical studies are often limited by the complexity of long-range particle-particle and particle-wall forces, including many-body fluctuating hydrodynamic interactions. Here, we report a computational study on the diffusion of spherical and cylindrical particles confined in a spherical cavity. We rely on an immersed-boundary general geometry Ewald-like method to capture lubrication and long-range hydrodynamics and include appropriate non-slip conditions at the confining walls. A Chebyshev polynomial approximation is used to satisfy the fluctuation-dissipation theorem for the Brownian suspension. Wemore » explore how lubrication, long-range hydrodynamics, particle volume fraction, and shape affect the equilibrium structure and the diffusion of the particles. It is found that once the particle volume fraction is greater than 10%, the particles start to form layered aggregates that greatly influence particle dynamics. Hydrodynamic interactions strongly influence the particle diffusion by inducing spatially dependent short-time diffusion coefficients, stronger wall effects on the particle diffusion toward the walls, and a sub-diffusive regime-caused by crowding-in the long-time particle mobility. The level of asymmetry of the cylindrical particles considered here is enough to induce an orientational order in the layered structure, decreasing the diffusion rate and facilitating a transition to the crowded mobility regime at low particle concentrations. Our results offer fundamental insights into the diffusion and distribution of globular and fibrillar proteins inside cells.« less
  4. Cuboidal liquid crystal phases under multiaxial geometrical frustration

    Cuboidal liquid crystal phases – the so-called blue phases – consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packing of such a network, leading to structures that have not been explored before. In this work, a Landau–de Gennes free energy formalism for the tensor alignment field Q is used to investigate the behavior of chiral liquid crystals under non-isotropic confinement. The underlying free energy functional is solved by relying on a Monte Carlo methodmore » that facilitates efficient exploration of configuration space. The results of simulations are expressed in terms of phase diagrams as a function of chirality and temperature for three families of spheroids: oblate, spherical, and prolate. Upon deformation, blue phases adapt and transform to accommodate the geometrical constraints, thereby resulting in a wider range of thermal stability. For oblate spheroids, confinement interferes with the development of a full blue phase structure, resulting on a combination of half skyrmions. For prolate spheroids, the blue phases are hybridized and exhibit features of blue phases I and II. More generally, it is shown that mechanical deformation provides an effective means to control, manipulate and stabilize blue phases and cholesterics confined in tactoids.« less
  5. Prolate and oblate chiral liquid crystal spheroids

    Liquid crystals are known to exhibit intriguing textures and color patterns, with applications in display and optical technologies. This work focuses on chiral materials and examines the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets. Inspired by processes encountered in nature, where insects and animals often rely on strain and temperature to alter the optical appearance of dispersed liquid crystalline elements, chiral droplets are dispersed in polymer filmsmore » and deformation induced by uniaxial or biaxial stretching. Our measurements are interpreted by resorting to simulations of the corresponding systems, thereby providing an in-depth understanding of the morphologies that arise in these materials. The reported structures and assemblies offer potential for applications in smart coatings, smart fabrics, and wearable sensors.« less
  6. Structure and proton conduction in sulfonated poly(ether ether ketone) semi-permeable membranes: a multi-scale computational approach

    The design of polymeric membranes for proton or ionic exchange highly depends on the fundamental understanding of the physical and molecular mechanisms that control the formation of the conduction channels.
  7. Fluctuations and phase transitions of uniaxial and biaxial liquid crystals using a theoretically informed Monte Carlo and a Landau free energy density

    In this work, we explore fluctuations during phase transitions of uniaxial and biaxial liquid crystals using a phenomenological free energy functional. We rely on a continuum-level description of the liquid crystal ordering with a tensorial parameter and a temperature dependent Landau polynomial expansion of the tensor's invariants. The free energy functional, over a three-dimensional periodic domain, is integrated with a Gaussian quadrature and minimized with a theoretically informed Monte Carlo method. We reconstruct analytical phase diagrams, following Landau and Doi 's notations, to verify that the free energy relaxation reaches the global minimum. Importantly, our relaxation method is able tomore » follow the thermodynamic behavior provided by other non-phenomenological approaches; we predict the first order character of the isotropic-nematic transition, and we identify the uniaxial-biaxial transition as second order. Finally, we use a finite-size scaling method, using the nematic susceptibility, to calculate the transition temperatures for 4-Cyano-4'-pentylbiphenyl (5CB) and N-(4-methoxybenzylidene)-4-butylaniline (MBBA). Our results show good agreement with experimental values, thereby validating our minimization method. Our approach is an alternative towards the relaxation of temperature dependent continuum-level free energy functionals, in any geometry, and can incorporate complicated elastic and surface energy densities.« less
  8. Leveling of Polymer Grating Structures upon Heating: Dimension Dependence on the Nanoscale and the Effect of Antiplasticizers

    The transition temperatures of nanoscale polymeric films are measured from a leveling experiment where a designed nanostructure is heated from below. Surface tension forces drive the relaxation of the polymeric features, allowing direct measurement of the critical temperature of collapse, T-flow and indirect measurement of the glass transition temperature, T-G. Small-angle X-ray scattering and atomic force microscopy are used to follow the leveling dynamics, whereas a mathematical model for the momentum balance is implemented to extract the viscosity of the polymer film as a function of temperature. Our methodology is illustrated in the context of films of poly(methyl methacrylate) thatmore » are patterned via nanoimprint lithography into dense gratings. We study how the glass transition temperature and the critical temperature of collapse vary as a function of the film size and the inclusion of the antiplasticizer, tris(2-chloropropyl) phosphate. The grating periods are varied consistently between 80 and 240 nm, whereas the antiplasticizer concentrations are 1, 3, 5, and 10 wt %. The solution of the momentum balance allows the detailed correlation between stresses, curvature, heating, and shear rates during leveling. We found that both temperatures, T-G and T-flow, decrease as the film size decreases or as the concentration of the antiplasticizer increases. In addition, antiplasticizer concentrations between 3 and 5 wt % stabilize the size dependence of T-flow. We show that the nature of the antiplasticizer is effectively to increase the low-temperature viscosity of the film. However, during leveling, the antiplasticized film sustains its curvature, thereby driving a sudden relaxation, once T-G is reached, and increasing the possibilities of defects.« less
  9. Mesoscale martensitic transformation in single crystals of topological defects

    Liquid-crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of double-twisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by the existence of grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with precision by relying on chemically nanopatterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of mesocrystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local reorganization of the crystallinemore » array, without diffusion of the double-twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the submicron regime, is found to be martensitic in nature when one considers the collective behavior of the double-twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal nucleation and the controlled growth of soft matter.« less
  10. Electrostatic confinement and manipulation of DNA molecules for genome analysis

    Very large DNA molecules enable comprehensive analysis of complex genomes, such as human, cancer, and plants because they span across sequence repeats and complex somatic events. When physically manipulated, or analyzed as single molecules, long polyelectrolytes are problematic because of mechanical considerations that include shear-mediated breakage, dealing with the massive size of these coils, or the length of stretched DNAs using common experimental techniques and fluidic devices. Accordingly, we harness analyte “issues” as exploitable advantages by our invention and characterization of the “molecular gate,” which controls and synchronizes formation of stretched DNA molecules as DNA dumbbells within nanoslit geometries. Molecularmore » gate geometries comprise micro- and nanoscale features designed to synergize very low ionic strength conditions in ways we show effectively create an “electrostatic bottle.” This effect greatly enhances molecular confinement within large slit geometries and supports facile, synchronized electrokinetic loading of nanoslits, even without dumbbell formation. Device geometries were considered at the molecular and continuum scales through computer simulations, which also guided our efforts to optimize design and functionalities. In addition, we show that the molecular gate may govern DNA separations because DNA molecules can be electrokinetically triggered, by varying applied voltage, to enter slits in a size-dependent manner. Lastly, mapping the Mesoplasmaflorum genome, via synchronized dumbbell formation, validates our nascent approach as a viable starting point for advanced development that will build an integrated system capable of large-scale genome analysis.« less
...

Search for:
All Records
Author / Contributor
0000000304049947

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization