skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm

    The development of high-fidelity mechanisms for chemically reactive systems is a challenging process that requires the compilation of rate descriptions for a large and somewhat ill-defined set of reactions. The present unified combination of modeling, experiment, and theory provides a paradigm for improving such mechanism development efforts. Here we combine broadband rotational spectroscopy with detailed chemical modeling based on rate constants obtained from automated ab initio transition state theory-based master equation calculations and high-level thermo- chemical parametrizations. Broadband rotational spectroscopy offers quantitative and isomer-specific detection by which branching ratios of polar reaction products may be obtained. Using this technique, wemore » observe and characterize products arising from H atom substitution reactions in the flash pyrolysis of acetone (CH3C(O)CH3) at a nominal temperature of 1800 K. The major product observed is ketene (CH2CO). Minor products identified include acetaldehyde (CH3CHO), propyne (CH3CCH), propene (CH2CHCH3), and water (HDO). Literature mechanisms for the pyrolysis of acetone do not adequately describe the minor products. The inclusion of a variety of substitution reactions, with rate constants and thermochemistry obtained from automated ab initio kinetics predictions and Active Thermochemical Tables analyses, demonstrates an important role for such processes. The pathway to acetaldehyde is shown to be a direct result of substitution of acetone’s methyl group by a free H atom, while propene formation arises from OH substitution in the enol form of acetone by a free H atom.« less
  2. Automated assignment of rotational spectra using artificial neural networks

    Here, a typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. While these spectra often encode troves of chemical information, identifying and assigning the individual spectra can be challenging. Traditional approaches typically involve visually identifying a pattern. A more modern approach is to apply an automated fitting routine. In this approach, combinations of 3 transitions are searched by trial and error, to fit the A, B, and C rotational constants in a Watson-type Hamiltonian. In this work, we develop an alternative approach-to utilize machine learning to train a computer to recognize the patterns inherent in rotationalmore » spectra. Broadband high-resolution rotational spectra are perhaps uniquely suited for pattern recognition, assignment, and species identification using machine learning. Repeating patterns of transition frequencies and intensities are now routinely recorded in broadband chirped-pulse Fourier transform microwave experiments in which both the number of resolution elements and the dynamic range surpass 104. At the same time, these high-resolution spectra are extremely sensitive to molecular geometry with each polar species having a unique rotational spectrum. Here we train the feed forward neural network on thousands of rotational spectra that we calculate, using the rules of quantum mechanics, from randomly generated sets of rotational constants and other Hamiltonian parameters. Reasonable physical constraints are applied to these parameter sets, yet they need not belong to existing species. A trained neural network presented with a spectrum identifies its type (e.g., linear molecule, symmetric top, or asymmetric top) and infers the corresponding Hamiltonian parameters (rotational constants, distortion, and hyperfine constants). The classification and prediction times, about 160 μs and 50 μs, respectively, seem independent of the spectral complexity or the number of molecular parameters. We describe how the network works, provide benchmarking results, and discuss future directions.« less
  3. Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor

    Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 mu bar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energizedmore » HCN, HNC, and HCCCN photoproducts with 10 mu s time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.« less
  4. Highly Unsaturated Platinum and Palladium Carbenes PtC3 and PdC3 Isolated and Characterized in the Gas Phase

    Carbenes of platinum and palladium, PtC3 and PdC3 , were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and abinitio calculations confirm that both molecules are linear. The geometry of PtC3 was accurately determined by fitting to the experimental moments of inertia of twenty-six isotopologues. In conclusion, the results are consistent with the proposal of an autogenic isolobal relationship between O, Au+ , and Ptatoms.

Search for:
All Records
Author / Contributor
0000000301539158

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization