skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin

    Medium- and high-entropy alloys based on the CrCoNi-system have been shown to display outstanding strength, tensile ductility and fracture toughness (damage-tolerance properties), especially at cryogenic temperatures. Here we examine the JIc and (back-calculated) KJIc fracture toughness values of the face-centered cubic, equiatomic CrCoNi and CrMnFeCoNi alloys at 20 K. At flow stress values of ~1.5 GPa, crack-initiation KJIc toughnesses were found to be exceptionally high, respectively 235 and 415 MPa√m for CrMnFeCoNi and CrCoNi, with the latter displaying a crack-growth toughness Kss exceeding 540 MPa√m after 2.25 mm of stable cracking, which to our knowledge is the highest such valuemore » ever reported. Characterization of the crack-tip regions in CrCoNi by scanning electron and transmission electron microscopy reveal deformation structures at 20 K that are quite distinct from those at higher temperatures and involve heterogeneous nucleation, but restricted growth, of stacking faults and fine nanotwins, together with transformation to the hexagonal closed-packed phase. The coherent interfaces of these features can promote both the arrest and transmission of dislocations to generate respectively strength and ductility which strongly contributes to sustained strain hardening. Indeed, we believe that these nominally single-phase, concentrated solid-solution alloys develop their fracture resistance through a progressive synergy of deformation mechanisms, including dislocation glide, stacking-fault formation, nano-twinning and eventually in situ phase transformation, all of which serve to extend continuous strain hardening which simultaneously elevates strength and ductility (by delaying plastic instability), leading to truly exceptional resistance to fracture.« less
  2. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

Search for:
All Records
Author / Contributor
0000000280806287

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization