skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling

    InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability must be investigated in detail. Due to the complexity of a MQW structure, compared with a simple pn junction, modeling the spectral response of these solar cells is not straightforward, and ad hoc methodologies must be implemented. In this paper, we propose a model, based on material parameters and closed-formula equations, that describes the shape of the quantum efficiencymore » of InGaN/GaN MQW solar cells, by taking into account the layer thickness, the temperature dependence of the absorption coefficient, and quantum confinement effects. We demonstrate (i) that the proposed model can effectively reproduce the spectral response of the cells; in addition, (ii) we prove that the bulk p-GaN layer absorbs radiation, but the carriers photogenerated in this region do not significantly contribute to device current. Finally, we show that (iii) by increasing the temperature, there is a redshift of the absorption edge due to bandgap narrowing, which can be described by Varshni law and is taken into account by the model, and a lowering in the extraction efficiency due to the increase in recombination (mostly Shockley–Read–Hall) inside the quantum wells, which is also visible by decreasing light intensity.« less
  2. Identification of dislocation-related and point-defects in III-As layers for silicon photonics applications

    Abstract The aim of this paper is to identify, analyze and compare the defects present in III-As, as a function of dislocation density, and as a function of the presence/absence of quantum dots (QDs). Such materials are of fundamental importance for the development of lasers and photodiodes for silicon photonics. The study is based on an extensive deep-level transient spectroscopy investigation, carried out on GaAs pin diodes grown on Si and on GaAs (that differ in the dislocation density), with and without embedded QDs. The original results described in this paper demonstrate that: (a) we were able to identify fourmore » different defects within the device grown on Si (three electron and one hole traps) and one defect (hole trap) in the device on GaAs, common to both samples; (b) all the majority carrier traps identified are located near midgap, i.e. are efficient non-radiative recombination centers; (c) such defects are absent (or non-detectable) in the sample grown on GaAs substrate, having a very low dislocation density; (d) the presence of QDs does not result in additional defects within the semiconductor material; (e) the analysis of the capture kinetics revealed that two of the identified traps are related to point defects, whereas the other two traps can be associated with point defects located near a dislocation; (f) a comparison with previous reports indicate that the detected traps are related to native III-As defects, or to oxygen-related complexes.« less
  3. Origin of the Diffusion-Related Optical Degradation of 1.3 μm Inas QD-LDs Epitaxially Grown on Silicon Substrate

    Not provided.
  4. Degradation of 1.3 μm InAs Quantum-Dot Laser Diodes: Impact of Dislocation Density and Number of Quantum Dot Layers

    Not provided.
  5. Physical Origin of the Optical Degradation of InAs Quantum Dot Lasers

    Not provided.
  6. Investigation of Current-Driven Degradation of 1.3 μm Quantum-Dot Lasers Epitaxially Grown on Silicon

    This work investigates the degradation processes affecting the long-term reliability of 1.3 μm InAs quantum-dot lasers epitaxially grown on silicon. By submitting laser samples to constant-current stress, we were able to identify the physical mechanisms responsible for the optical degradation. More specifically, the samples (i) exhibited a gradual increase in threshold current, well correlated with (ii) a decrease in sub-threshold emission, and (iii) a decrease in slope efficiency. These variations were found to be compatible with a diffusion process involving the propagation of defects toward the active region of the device and the subsequent decrease in injection efficiency. This hypothesismore » was also supported by the increase in the defect-related current conduction components exhibited by the electrical characteristics, and highlights the role of defects in the gradual degradation of InAs quantum dot laser diodes. Electroluminescence measurements were used to provide further insight in the degradation process.« less

Search for:
All Records
Author / Contributor
0000000267154827

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization