skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Characterization of Natural Consolidated Halloysite Nanotube Structures

    Halloysite is a unique 1:1 clay mineral frequently appearing with nanotubular morphology, and having surfaces of different polarity with interesting and important technological applications. HNTs can be consolidated naturally in the earth by pressure and thermal flows. In this study of natural consolidated HNTs, the strength and hardness of these materials were found to be dependent on the presence of impurities (gibbsite, alunite, quartz, and other silica minerals), which accounted for the increased stability of such samples. In the absence of impurities, the strength of consolidated HNTs was significantly lower. The first 3D mapping of the pore structure of naturalmore » consolidated HNT is provided. The contributions of the porosity within the nanotubes and between the nanotubes were delineated using a combination of non-invasive ultra-small and small-angle X-ray scattering (USAXS/SAXS) analyses, BET/BJH pore size analyses, and computed tomography studies. A total porosity of 40%, as determined by X-ray attenuation and He porosimetry, was found for the natural consolidated HNTs, of which about one-third was due to the inter-HNT porosity. Nano-X-ray computed tomography (nano-XCT) analyses also indicated that 76% of the inter-HNT pores were smaller than 150 nm in diameter. The intra-HNT pore size determined by combined USAXS/SAXS and BET/BJH was about 10 nm. This pore network information is essential for the utilization of natural consolidated HNTs as a model geomaterial to investigate the effects of surface characteristics on confined fluid flow.« less
  2. In-Situ Stress Measurements at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Site

    A scientific injection campaign was conducted at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) site in 2017 and 2019. The testing included pump-in/shut-in, pump-in/flowback, and step rate tests. Various methods have been employed to interpret the in-situ stress from the test dataset. This study focuses on methods to interpret the minimum in-situ stress from step rate, pump-in/extended shut-in tests data obtained during the stimulation of two zones in Well 58-32. This well was drilled in low-permeability granitoid. A temperature of 199 °C was recorded at the well’s total depth of 2297 m relative to the rotary Kellymore » bushing (RKB). The lower zone (Zone 1) consisted of 46 m of the openhole at the toe of the well. Fractures in the upper zone (Zone 2) were stimulated between 2123–2126 m measured depths (MD) behind the casing. The closure stress gradient variation depended on the depth and the injection chronology. The closure stress was found to increase with the pumping rate/volume. This stress variation could indicate that poroelastic effects (“back stress”) and the presence of adjacent natural fractures may play an important role in the interpretation of fracture closure stress. Further, progressively increasing local total stresses may, consequently, have practical applications when moderate volumes of fluid are injected in a naturally fractured or high-temperature reservoir. The alternative techniques that use pump-in/flowback tests and temperature signatures provide a valuable perspective view of the in-situ stress measurements.« less
  3. Proppant backflow: Mechanical and flow considerations


Search for:
All Records
Author / Contributor
0000000266635063

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization