skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Experiments on the single-mode Richtmyer–Meshkov instability with reshock at high energy densities

    The hydrodynamic instability growth of a reshocked single-mode interface between high energy density fluids is studied. A laser-driven shock wave is used to drive an initially solid, sinusoidal interface between a dense plastic (1.43 g/cc) and a light foam (≈ 0.110 g/cc). After the interface has grown to a nonlinear state where the amplitude is of order of the wavelength, it is reshocked. The reshock compresses the nonlinear perturbation, which then grows at about twice the rate. While the pre-reshock growth rate is sensitive to the initial amplitude and wavelength of the perturbation, the post-reshock growth rate is comparatively insensitive to themore » initial condition. Qualitatively, we observe that the perturbations are less coherent after reshock, consistent with the idea that having a reshock accelerates the transition to turbulence. We find that some memory of the initial condition remains, even after reshock at late time: it appears if the initial perturbations have large enough wavelengths, and the flow structure of size comparable to the initial wavelength persists through reshock. Our results agree with design simulations and are consistent with the phenomenology of reshock studies in conventional gaseous shock tubes.« less
  2. Simulation and flow physics of a shocked and reshocked high-energy-density mixing layer

    This work describes a computational investigation of multimode instability growth and multimaterial mixing induced by multiple shock waves in a high-energy-density (HED) environment, where pressures exceed 1 Mbar. The simulations are based on a series of experiments performed at the National Ignition Facility (NIF) and designed as an HED analogue of non-HED shock-tube studies of the Richtmyer–Meshkov instability and turbulent mixing. A three-dimensional computational modelling framework is presented. It treats many complications absent from canonical non-HED shock-tube flows, including distinct ion and free-electron internal energies, non-ideal equations of state, radiation transport and plasma-state mass diffusivities, viscosities and thermal conductivities. Themore » simulations are tuned to the available NIF data, and traditional statistical quantities of turbulence are analysed. Integrated measures of turbulent kinetic energy and enstrophy both increase by over an order of magnitude due to reshock. Large contributions to enstrophy production during reshock are seen from both the baroclinic source and enstrophy–dilatation terms, highlighting the significance of fluid compressibility in the HED regime. Dimensional analysis reveals that Reynolds numbers and diffusive Péclet numbers in the HED flow are similar to those in a canonical non-HED analogue, but conductive Péclet numbers are much smaller in the HED flow due to efficient thermal conduction by free electrons. It is shown that the mechanism of electron thermal conduction significantly softens local spanwise gradients of both temperature and density, which causes a minor but non-negligible decrease in enstrophy production and small-scale mixing relative to a flow without this mechanism.« less
  3. Potential energy surfaces of quintet and singlet O 4

  4. Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface


Search for:
All Records
Author / Contributor
0000000258350228

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization