skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Finite Element Simulation of Potential-Induced Degradation Kinetics in p-Type Silicon Solar Modules

    Not provided.
  2. Surface reaction for efficient and stable inverted perovskite solar cells

    We report perovskite solar cells (PSCs) with an inverted structure (often referred to as the p-i-n architecture) are attractive for future commercialization due to their easily scalable fabrication, reliable operation, and compatibility with a wide range of perovskite-based tandem device architectures. However, the power conversion efficiency (PCE) of p-i-n PSCs falls behind n-i-p (or normal) structure counterparts. This large performance gap could undermine efforts to adopt p-i-n architectures, despite their other advantages. Given the remarkable advances in perovskite bulk materials optimization over the past decade, interface engineering has become the most important strategy to push PSC performance to its limit.more » Here, we report a reactive surface engineering approach based on a simple post-growth treatment of 3-(Aminomethyl)pyridine (3-APy) on top of a perovskite thin film. First, the 3-APy molecule selectively reacts with surface FA+, reducing perovskite surface roughness and surface potential fluctuations associated with surface steps/terraces. Second, the reaction product on the perovskite surface decreases the formation energy of charged iodine-vacancies, leading to effective n-type doping with a reduced work function in the surface region. With this reactive surface engineering, the resulting p-i-n PSCs obtained a PCE over 25%, along with retaining 87% of the initial PCE after over 2400 h of one-sun operation at about 55 degrees C in air.« less
  3. Dimethylammonium Addition to Halide Perovskite Precursor Increases Vertical and Lateral Heterogeneity

    Adding a large A-site cation, such as dimethylammonium (DMA), to the perovskite growth solution has been shown to improve the performance and long-term operational stability of halide perovskite solar cells. To better understand the origins of these improvements, we explore the changes in film structure, composition, and optical properties of a formamidinium (FA), Cs, Pb, and mixed halide perovskite following the addition of DMA to the perovskite growth solution in the ratio of DMA0.1FA0.6Cs0.3Pb(I0.8Br0.2)3. Using time-of-flight secondary-ion mass spectrometry (TOF-SIMS), we show that DMA is indeed incorporated into the perovskite, with a higher DMA concentration at the surface. Using amore » combination of photoluminescence (PL) microscopy and photoinduced force microscopy-based (PiFM) nanoinfrared (nanoIR), we demonstrate that incorporating DMA into the film leads to increased local heterogeneity in the local bandgap and clustering of the local formamidinium (CH5N2+) composition. In addition, using nano-X-ray diffraction, we demonstrate that DMA incorporation also alters the local structural composition by changing the local d-spacing distribution and grain size. Our results suggest that compositional variations in the organic cations at the A-site drive the structural heterogeneity observed in the case of DMA-incorporated films. Our results also suggest that while current DMA-additive-based approaches do have benefits to operational stability and device performance, process optimization to achieve local compositional and structural homogeneity could further boost both of these gains in performance, bringing further gains to solar cells using DMA additives.« less
  4. A Poisson–Nernst–Planck Model of Ion Transport and Interface Segregation in Metal–Insulator–Semiconductor Structures and Solar Cells

    A numerical model that describes the transport of mobile ionic species in metal–insulator–semiconductor (MIS) and photovoltaic (PV) devices subject to temperature and voltage stress is presented. The finite element method (FEM) is used to solve the Nernst–Planck equation while imposing Poisson's equation self‐consistently as a restriction for the electrostatic potential. This allows the contribution of the ionic species to the potential to be taken into account. Using a variational formulation eases the implementation of diverse boundary conditions, including the incorporation of segregation kinetics at the device interfaces. Segregation across the dielectric–semiconductor interface is relevant to modeling the electronic device degradationmore » in systems where contamination reaches the semiconductor. The model in closed systems with no‐flux boundary conditions is validated first. In the limiting case of low contamination levels with respect to the gate bias, the FEM solution matches analytically derived approximations. Then, the implementation is broadened to include an open boundary at the dielectric–semiconductor interface to account for leakage of ions. The predicted time dependence of the flatband voltage in Na‐contaminated MIS test structures agrees well with measurements. The model successfully captures the role of long‐range ion transport at concentrations of relevance to electronic and PV device instability and neuromorphic computing.« less
  5. Electrochemical Screening of Contact Layers for Metal Halide Perovskites

    Optimizing selective contact layers in photovoltaics is necessary to yield high-performing stable devices. Furthermore, this has been difficult for perovskites due to their complex interfacial defects that affect carrier concentrations in the active layer and charge transfer and recombination at the interface. Using vacuum thermally evaporated tin oxide as a case study, we highlight electrochemical tests that are simple yet screen device-relevant contact layer properties, making them useful for process development and quality control. Specifically, we show that cyclic voltammetry and potentiostatic chronoamperometry correlate to key performance parameters in completed devices and other material/interfacial properties relevant to devices such asmore » shunt pathways and chemical composition. Having fast, reliable, scalable, and actionable probes of electronic properties is increasingly important as halide perovskite photovoltaics approach their theoretical limits and scale to large-area devices.« less
  6. Comparison of the Mechanical Properties of a Conjugated Polymer Deposited Using Spin Coating, Interfacial Spreading, Solution Shearing, and Spray Coating

    The mechanical properties of π-conjugated (semiconducting) polymers are a key determinant of the stability and manufacturability of devices envisioned for applications in energy and healthcare. These properties—including modulus, extensibility, toughness, and strength—are influenced by the morphology of the solid film, which depends on the method of processing. To date, the majority of work done on the mechanical properties of semiconducting polymers has been performed on films deposited by spin coating, a process not amenable to the manufacturing of large-area films. Here, we compare the mechanical properties of thin films of regioregular poly(3-heptylthiophene) (P3HpT) produced by three scalable deposition processes—interfacial spreading,more » solution shearing, and spray coating—and spin coating (as a reference). Our results lead to four principal conclusions. (1) Spray-coated films have poor mechanical robustness due to defects and inhomogeneous thickness. (2) Sheared films show the highest modulus, strength, and toughness, likely resulting from a decrease in free volume. (3) Interfacially spread films show a lower modulus but greater fracture strain than spin-coated films. (4) The trends observed in the tensile behavior of films cast using different deposition processes held true for both P3HpT and poly(3-butylthiophene) (P3BT), an analogue with a higher glass transition temperature. Grazing incidence X-ray diffraction and ultraviolet–visible spectroscopy reveal many notable differences in the solid structures of P3HpT films generated by all four processes. Herein, while these morphological differences provide possible explanations for differences in the electronic properties (hole mobility), we find that the mechanical properties of the film are dominated by the free volume and surface topography. In field-effect transistors, spread films had mobilities more than 1 magnitude greater than any other films, likely due to a relatively high proportion of edge-on texturing and long coherence length in the crystalline domains. Overall, spread films offer the best combination of deformability and charge-transport properties.« less
  7. Toward Exotic Silicon Doping with a Low Thermal Budget and Flexible Profile Control by Liquid-Phase Epitaxy

    Not provided.
  8. Anisotropic nanoporous morphology of ZnO-supported Co that enhances catalytic activity

    In this work, a novel conversion reaction synthesis (CRS) method is used to synthesize ZnO-supported Co nanoporous metal hybrid structures from a co-precipitated nanocomposite precursor of ZnO and Co3O4. After removal of Li2O with water, the resulting material consists of ZnO-supported Co nanoparticles that are interconnected to form anisotropic micro-particles. Additionally, individual ZnO nanoparticles have an anisotropic morphology, as revealed by synchrotron XRD analysis. Microscopy and surface area studies show these materials have an average pore size of 10–30 nm and specific surface areas up to 28 m2 g–1. The hybrid structure also has increased heat resistance compared to thatmore » of pure nanoporous metals; the Co phase within the ZnO–Co hybrid exhibits much less coarsening than the analogous nanoporous metal without ZnO at temperatures of 400 °C and above. These ZnO–Co hybrid materials were tested as heterogeneous catalysts for the steam reformation of ethanol at 400 °C. The nanoporous ZnO–Co hybrid material exhibits complete conversion of ethanol and high hydrogen selectivity, producing H2 with a molar yield of approximately 70%.« less
  9. Europium Addition Reduces Local Structural Disorder and Enhances Photoluminescent Yield in Perovskite CsPbBr3

    Abstract Correlative X‐ray microscopy, including synchrotron X‐ray diffraction and fluorescence, is leveraged to understand the local role of europium as a B‐site additive in CsPbBr 3 perovskite crystals. Europium addition reduces microstrain in the perovskite, despite the fact that the degree of europium incorporation into the perovskite varies locally, with a maximum loading over twice the nominal stoichiometry. The presence of europium improves photoluminescence yield and bandwidth, while shifting the emission to bluer wavelengths. Finally, europium‐containing crystals have greatly improved X‐ray hardness. The findings show promise for europium as an additive in perovskite optoelectronic devices.
...

Search for:
All Records
Author / Contributor
0000000246099312

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization