skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Quantitative gas-phase transmission electron microscopy: Where are we now and what comes next?

    Abstract Based on historical developments and the current state of the art in gas-phase transmission electron microscopy (GP-TEM), we provide a perspective covering exciting new technologies and methodologies of relevance for chemical and surface sciences. Considering thermal and photochemical reaction environments, we emphasize the benefit of implementing gas cells, quantitative TEM approaches using sensitive detection for structured electron illumination (in space and time) and data denoising, optical excitation, and data mining using autonomous machine learning techniques. These emerging advances open new ways to accelerate discoveries in chemical and surface sciences. Graphical abstract
  2. An additively manufactured near-eutectic Al-Ce-Ni-Mn-Zr alloy with high creep resistance

    A new additively manufactured (AM) Al-7.5Ce-4.5Ni-0.4Mn-0.7Zr (wt.%) near-eutectic alloy is reported, which shows unprecedented creep resistance up to 400 °C (a homologous temperature of 0.72). The eutectic solidification microstructure comprises ~ 27 vol% of coarsening-resistant second phase network with an ultrafine (<100 nm) inter-phase spacing. Both Mn and Zr contribute to creep resistance of the alloy. Small amount of Mn addition promotes selection of coarsening resistant phases without compromising the alloy processability. Zr not only improves hot-tearing resistance, but further enhances the second phase coarsening resistance resulting in improved creep resistance. Neutron diffraction performed during creep deformation reveals that themore » underlying mechanism for creep resistance in this alloy is impedance to dislocation motion stemming from the ultrafine eutectic solidification microstructure, whereas load transfer strengthening becomes less effective as the creep temperature increases. The second phase forms a continuous network in the as-fabricated condition, which is maintained during long-term creep at 300 °C. However, this network is fragmented into fine dispersoids at higher temperatures. It is proposed that the rate-limiting deformation mechanism at 300–400 °C is (i) dislocation climb for the alloy with fragmented second phase dispersoids and (ii) Orowan looping for the alloy with a continuous second phase network. In conclusion, the present design of an AM-processable multicomponent eutectic alloy with high creep resistance can be applied to other metallic systems exhibiting eutectic reactions, with expected extreme creep resistance.« less
  3. Heterogeneous phase transformation pathways in additively manufactured Al-Ce-Mn alloys

    Heat treatment of additively manufactured Al-Ce based multicomponent alloys leads to complex microstructure evolution. In this research, the ability to extend the phase transformation theories involving nucleation of a product phase from a heterogeneous multi-phase microstructure typical to that of additively manufactured samples is explored. The Al-10Ce-8Mn (wt%) was used as a model alloy system. Under additive manufacturing conditions different solidification microstructures were obtained due to spatial and temporal variations of thermal gradients (G) and liquid-solid interface velocities (R) within a given melt pool. Near the melt pool boundary (high G and low R, referred as MPB region), initially, Al20Mn2Cemore » forms from the liquid followed by a eutectic of FCC Al and Al11Ce3. In the melt pool interiors (low G and high R referred as ES region) a eutectic structure between FCC Al and Al20Mn2Ce is observed. During subsequent heat treatments, the MPB and ES regions transform into different sets of microstructures. In the MPB region, a fine globular microstructure containing FCC Al, Al11Ce3, Al6Mn, and Al12Mn results from the decomposition of Al20Mn2Ce. In the ES region a faceted Al51Mn7Ce4 plate phase results from the decomposition of Al20Mn2Ce. The formation of the Al51Mn7Ce4 phase within the eutectic microstructure at the boundaries of FCC Al and Al20Mn2Ce has not been reported in the literature. Further, these two distinct phase transformation pathways are rationalized based on the role of driving force on the nucleation of (Al6Mn) and/or metastable intermetallic (Al51Mn7Ce4) phases at the interface of aluminum (FCC) and the non-equilibrium intermetallic (Al20Mn2Ce) phases.« less
  4. Load shuffling during creep deformation of an additively manufactured AlCuMnZr alloy

    Here, the high-temperature deformation behavior of an additively manufactured Al-Cu-Mn-Zr alloy is evaluated in the as-fabricated and heat-treated states using traditional ex-situ and in-situ neutron diffraction creep experiments performed at 300 °C. The dominant reinforcement phase in the alloy, θ-Al2Cu, despite its high volume fraction of ~10%, does not provide load transfer strengthening during creep deformation. Instead, the lattice strain evolution suggests a new mechanism we term “load shuffling” wherein the initial load is transferred away from precipitate-free zones along the grain boundaries where most of the θ-Al2Cu particles are located to precipitate-strengthened grain interiors. Notwithstanding the lack of load transfermore » strengthening, the as-fabricated AM Al-Cu-Mn-Zr alloy still possesses improved creep resistance at 300 °C relative to a cast alloy with similar composition. The proposed load shuffling mechanism explains the lack of observed L12-Al3Zr strengthening at 300 °C and helps identify several strategies for improvement of elevated-temperature mechanical response of AM Al alloys.« less
  5. Using θ' interfaces as templates for planar L12 precipitation in AlCuMnZr alloys

    Controlled Mn and Zr additions to Al-Cu alloys have allowed for the improved retention of mechanical properties after extended 350°C exposures by stabilizing the main strengthening θ' (Al2Cu) phase. Ultimately, θ'/L12 (Al3Zr) co-precipitate formation stabilizes θ' most effectively; however, Zr diffuses sluggishly and has low solubility in aluminum castings. Increasing the Zr segregation rate would allow for faster and more effective θ'/L12 co-precipitation. It is demonstrated that the Zr segregation rate is faster when the Zr matrix content is higher. A much higher Zr matrix content was achieved by rapid cooling during additive manufacturing (AM) that produces θ'/L12 co-precipitation faster,more » which is shown by scanning transmission electron microscopy and atom probe tomography experiments. It was also found that Zr continuously segregates to θ' interfaces up to the most aggressive heat treatment studied such that planar L12 precipitates remain after the metastable θ' dissolves. In this manner, we demonstrate that θ' coherent interfaces serve as perfect templates to form stable planar L12 precipitates that can provide strength at higher temperatures than traditional θ' strengthened AlCu alloys. This work introduces an alloy design strategy that uses metastable precipitates to quickly nucleate and grow co-precipitates with a desired geometry that contain slow diffusing elements. These ideas can be applied to engineer more heat resistant alloys by taking advantage of high solute matrix contents enabled by rapid cooling during additive manufacturing.« less
  6. In Situ Observations of Barium Sulfate Nucleation in Nanopores

    In this work, the nucleation and growth of barium sulfate in nanoporous silica was investigated using in situ small-angle X-ray scattering and X-ray pair distribution function analysis, together with ex situ transmission and scanning transmission electron microscopy (TEM and STEM) imaging. We found that crystalline barite formation in micropores is likely preceded by a nonbulk barite phase in the nanopores, indicating a possible nonclassical nucleation pathway for barium sulfate under confinement. The nucleation of barium sulfate inside the nanopores stopped at ~12% of the pores filled and was seemingly limited by the formation of crystals near the exterior of themore » silica particles, which likely blocked subsequent solute transport into the interior of the nanopores. The growth rate of barium sulfate was fit using the Johnson–Mehl–Avrami–Kolmogorov equation and constrained using a growth rate of barite of ~1.0 × 10–7 mol/m2/s, obtained from previous studies, but is consistent with TEM and STEM observations made here. The inferred nucleation rate of barium sulfate inside nanopores is estimated to be on the order of 1.0 × 109 nuclei/m2/s, which is 2 orders of magnitude higher than previous measurements on a planar silica substrate (~1.0 × 107 nuclei/m2/s). This implies that the ability of silica nanopores to promote barium sulfate nucleation is sufficiently high as to create a potentially self-limiting condition, where the nucleation reaction is shut down prematurely because rapid growth blocks reactant transport.« less
  7. Dislocation-θ' (Al2Cu) interactions during creep deformation of an Al-Cu alloy

    While precipitate-dislocation interactions are well-understood for Al-Cu alloys in tension, creep behavior has seen far less study. New, thermally-stabilized Al-Cu alloys have θ' (Al2Cu) as strengthening precipitates that remain stable up to 300 °C (~60% of the melting temperature) and higher, where creep becomes essential to the mechanical behavior. This investigation identifies the precipitate-dislocation interactions in such an Al-Cu alloy using in-situ neutron diffraction and scanning transmission electron microscopy. Significant load transfer to the θ' precipitates occurs, which can be attributed to dislocation loops on the interfaces of θ' and the Al matrix. Thus, Orowan looping is identified to bemore » the primary activity for precipitate-dislocation interactions. As Orowan looping and load transfer are associated with significant strain hardening, these results explain the excellent creep resistance seen in this alloy, and provide insights into the design of precipitation strengthened alloys with superior creep performance.« less
  8. Repurposing the θ (Al2Cu) phase to simultaneously increase the strength and ductility of an additively manufactured Al–Cu alloy

    The Al–Cu–Mn–Zr (ACMZ) cast family of alloys offers unique properties and value propositions for higher strength, higher temperature lightweight components of future vehicles. Earlier research has demonstrated trade-offs in the selection of the alloy chemistry in which an increase in Cu content from 6 up to 9 wt% improves hot tear resistance but lowers ductility. However, a recent study has demonstrated that higher-Cu (9Cu) ACMZ fabricated with laser powder bed fusion additive manufacturing (AM) results in an increase in both ductility and strength when compared to as-aged microstructure of cast 9Cu alloys. The mechanisms of differing mechanical performance of themore » cast and AM ACMZ alloys are elucidated in the current paper through the utilization of in situ high energy x-ray diffraction (HEXRD) tensile testing wherein lattice strains of different phases are calculated and correlated to their stresses. The ACMZ alloys consisted of theta (θ) and theta prime (θ') phases (both Al2Cu in nominal composition) within an aluminum matrix. The larger micron-size θ phase which decorated the grain boundaries in 9Cu ACMZ cast alloys recorded small lattice strains, while the submicron, homogeneously distributed θ phase in the 9Cu ACMZ AM alloy recorded considerably higher lattice strains. The maximum stress reached in the θ phase for the cast 9Cu alloy was found to be ~280 MPa, which was lower than the AM 9Cu alloy which registered a maximum stress of ~1.4 GPa. These measurements indicate that delayed fracture of the finer intermetallic phases simultaneously improves the ductility and strength of AM 9Cu alloy relative to the cast 9Cu alloy, which exhibits early fracture of the larger intermetallic particles.« less
  9. Microstructural evolution and strengthening mechanisms in a heat-treated additively manufactured Al–Cu–Mn–Zr alloy

    In this report the microstructural and strength evolution of an additively manufactured Al-8.6Cu-0.5Mn-0.9Zr alloy upon aging at 300, 350, and 400 °C is investigated. The strengthening phases of the alloy evolve significantly upon aging, with breakdown and spheroidization of the interconnected θ-Al2Cu network, dissolution of metastable θ'-Al2Cu precipitates, and precipitation of nanometric L12-Al3Zr from a matrix supersaturated in Zr. In the peak-aged states, the alloy displays a favorable combination of strength and ductility, with a room-temperature yield strength of 314–341 MPa and ductility of 11–13%. The measured yield strengths for microstructures with different aging treatments are compared to predictions ofmore » yield strengths from grain boundary, solid solution, and particle strengthening contributions. The observed strain hardening behavior is related to fundamental precipitate and dislocation interactions. Comparison between predicted and measured strength values indicates a continued need for strengthening models specifically developed for the heterogeneous microstructures of additively manufactured alloys.« less
  10. A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy

    Existing additively manufactured aluminum alloys exhibit poor creep resistance due to coarsening of their strengthening phases and refined grain structures. In this paper, we report on a novel additively manufactured Al-10.5Ce-3.1Ni-1.2Mn wt.% alloy which displays excellent creep resistance relative to cast high-temperature aluminum alloys at 300–400 °C. In this work, the creep resistance of this alloy is attributed to a high volume fraction (~35%) of submicron intermetallic strengthening phases which are coarsening-resistant for hundreds of hours at 350 °C. The results herein demonstrate that additive manufacturing provides opportunities for development of creep-resistant aluminum alloys that may be used in bulkmore » form in the 250–400 °C temperature range. Pathways for further development of such alloys are identified.« less
...

Search for:
All Records
Author / Contributor
0000000245528277

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization