skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling

    PyApprox is a Python-based one-stop-shop for probabilistic analysis of numerical models such as those used in the earth, environmental and engineering sciences. Easy to use and extendable tools are provided for constructing surrogates, sensitivity analysis, Bayesian inference, experimental design, and forward uncertainty quantification. The algorithms implemented represent a wide range of methods for model analysis developed over the past two decades, including recent advances in multi-fidelity approaches that use multiple model discretizations and/or simplified physics to significantly reduce the computational cost of various types of analyses. An extensive set of Benchmarks from the literature is also provided to facilitate themore » easy comparison of new or existing algorithms for a wide range of model analyses. Here, this paper introduces PyApprox and its various features, and presents results demonstrating the utility of PyApprox on a benchmark problem modeling the advection of a tracer in groundwater.« less
  2. Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk

    We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. Risk measures combine objective probabilities with the subjective values of a decision maker to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical approximations obtained from the training data. These surrogate models limit over-confidence in reliability and safety assessments and produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detailmore » the construction of conservative surrogate models that can be tailored to a stakeholder’s risk preferences and then present an approach, based on stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. Our surrogate models include biases that permit them to conservatively estimate the target risk measures. We provide theoretical results that show that these biases decay at the same rate as the L2 error in the surrogate model. Numerical demonstrations confirm that risk-adapted surrogate models do indeed overestimate the target risk measures while converging at the expected rate.« less
  3. Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems

    Abstract We present an adaptive algorithm for constructing surrogate models of multi‐disciplinary systems composed of a set of coupled components. With this goal we introduce “coupling” variables with a priori unknown distributions that allow surrogates of each component to be built independently. Once built, the surrogates of the components are combined to form an integrated‐surrogate that can be used to predict system‐level quantities of interest at a fraction of the cost of the original model. The error in the integrated‐surrogate is greedily minimized using an experimental design procedure that allocates the amount of training data, used to construct each component‐surrogate,more » based on the contribution of those surrogates to the error of the integrated‐surrogate. The multi‐fidelity procedure presented is a generalization of multi‐index stochastic collocation that can leverage ensembles of models of varying cost and accuracy, for one or more components, to reduce the computational cost of constructing the integrated‐surrogate. Extensive numerical results demonstrate that, for a fixed computational budget, our algorithm is able to produce surrogates that are orders of magnitude more accurate than methods that treat the integrated system as a black‐box.« less
  4. MFNets: data efficient all-at-once learning of multifidelity surrogates as directed networks of information sources

    We present an approach for constructing a surrogate from ensembles of information sources of varying cost and accuracy. The multifidelity surrogate encodes connections between information sources as a directed acyclic graph, and is trained via gradient-based minimization of a nonlinear least squares objective. While the vast majority of state-of-the-art assumes hierarchical connections between information sources, our approach works with flexibly structured information sources that may not admit a strict hierarchy. The formulation has two advantages: (1) increased data efficiency due to parsimonious multifidelity networks that can be tailored to the application; and (2) no constraints on the training data—we canmore » combine noisy, non-nested evaluations of the information sources. Finally, numerical examples ranging from synthetic to physics-based computational mechanics simulations indicate the error in our approach can be orders-of-magnitude smaller, particularly in the low-data regime, than single-fidelity and hierarchical multifidelity approaches.« less
  5. Optimal experimental design for prediction based on push-forward probability measures

    Incorporating experimental data is essential for increasing the credibility of simulation-aided decision making and design. This paper presents a method which uses a computational model to guide the optimal acquisition of experimental data to produce data-informed predictions of quantities of interest (QoI). Many strategies for optimal experimental design (OED) select data that maximize some utility that measures the reduction in uncertainty of uncertain model parameters, for example the expected information gain between prior and posterior distributions of these parameters. In this paper, we seek to maximize the expected information gained from the pushforward of an initial (prior) density to themore » push-forward of the updated (posterior) density through the parameter-to-prediction map. The formulation presented is based upon the solution of a specific class of stochastic inverse problems which seeks a probability density that is consistent with the model and the data in the sense that the push-forward of this density through the parameter-to-observable map matches a target density on the observable data. While this stochastic inverse problem forms the mathematical basis for our approach, we develop a one-step algorithm, focused on push-forward probability measures, that leverages inference-for-prediction to bypass constructing the solution to the stochastic inverse problem. A number of numerical results are presented to demonstrate the utility of this optimal experimental design for prediction and facilitate comparison of our approach with traditional OED.« less
  6. Modeling Water Quality in Watersheds: From Here to the Next Generation

    In this synthesis, we assess present research and anticipate future development needs in modeling water quality in watersheds. We first discuss areas of potential improvement in the representation of freshwater systems pertaining to water quality, including representation of environmental interfaces, in-stream water quality and process interactions, soil health and land management, and (peri-)urban areas. In addition, we provide insights into the contemporary challenges in the practices of watershed water quality modeling, including quality control of monitoring data, model parameterization and calibration, uncertainty management, scale mismatches, and provisioning of modeling tools. Finally, we make three recommendations to provide a path forwardmore » for improving watershed water quality modeling science, infrastructure, and practices. These include building stronger collaborations between experimentalists and modelers, bridging gaps between modelers and stakeholders, and cultivating and applying procedural knowledge to better govern and support water quality modeling processes within organizations.« less
  7. The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support

    Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling. The tremendous potential benefits of SA are, however, yet to be fully realized, both for advancing mechanistic and data-driven modeling of human and natural systems, and in support of decision making. In this perspective paper, a multidisciplinary group of researchers and practitioners revisit the current status of SA, and outline research challenges in regard to both theoretical frameworks and their applications to solve real-world problems. Six areas are discussed that warrant further attention, including (1) structuring and standardizing SA as a discipline, (2) realizing the untappedmore » potential of SA for systems modeling, (3) addressing the computational burden of SA, (4) progressing SA in the context of machine learning, (5) clarifying the relationship and role of SA to uncertainty quantification, and (6) evolving the use of SA in support of decision making. An outlook for the future of SA is provided that underlines how SA must underpin a wide variety of activities to better serve science and society.« less
  8. Gradient-based optimization for regression in the functional tensor-train format

    Predictive analysis of complex computational models, such as uncertainty quantification (UQ), must often rely on using an existing database of simulation runs. In this paper we consider the task of performing low-multilinear-rank regression on such a database. Specifically we develop and analyze an efficient gradient computation that enables gradient-based optimization procedures, including stochastic gradient descent and quasi-Newton methods, for learning the parameters of a functional tensor-train (FT). We compare our algorithms with 22 other nonparametric and parametric regression methods on 10 real-world data sets and show that for many physical systems, exploiting low-rank structure facilitates efficient construction of surrogate models.more » Here, we use a number of synthetic functions to build insight into behavior of our algorithms, including the rank adaptation and group-sparsity regularization procedures that we developed to reduce overfitting. Finally we conclude the paper by building a surrogate of a physical model of a propulsion plant on a naval vessel.« less
  9. Generation and application of multivariate polynomial quadrature rules

    The search for multivariate quadrature rules of minimal size with a specified polynomial accuracy has been the topic of many years of research. Finding such a rule allows accurate integration of moments, which play a central role in many aspects of scientific computing with complex models. The contribution of this paper is twofold. First, we provide novel mathematical analysis of the polynomial quadrature problem that provides a lower bound for the minimal possible number of nodes in a polynomial rule with specified accuracy. We give concrete but simplistic multivariate examples where a minimal quadrature rule can be designed that achievesmore » this lower bound, along with situations that showcase when it is not possible to achieve this lower bound. Our second contribution is the formulation of an algorithm that is able to efficiently generate multivariate quadrature rules with positive weights on non-tensorial domains. Our tests show success of this procedure in up to 20 dimensions. We test our method on applications to dimension reduction and chemical kinetics problems, including comparisons against popular alternatives such as sparse grids, Monte Carlo and quasi Monte Carlo sequences, and Stroud rules. The quadrature rules computed in this paper outperform these alternatives in almost all scenarios.« less
  10. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
...

Search for:
All Records
Author / Contributor
000000023517337X

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization