skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. 2023 Roadmap on molecular modelling of electrochemical energy materials

    Abstract New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as empowered by machine learning techniques can help us to understand, control and design electrochemical energy materials at atomistic precision. Therefore, this roadmap, which is a collection of authoritative opinions, serves as a gateway for both the experts and the beginners to have a quick overview of the current status and corresponding challenges in molecular modelling of electrochemical energy materials for batteries, supercapacitors, COmore » 2 reduction reaction, and fuel cell applications.« less
  2. Simulating dielectric spectra: A demonstration of the direct electric field method and a new model for the nonlinear dielectric response

    We demonstrate a method to compute the dielectric spectra of fluids in molecular dynamics (MD) by directly applying electric fields to the simulation. We obtain spectra from MD simulations with low magnitude electric fields (≈0.01 V/Å) in agreement with spectra from the fluctuation–dissipation method for water and acetonitrile. We examine this method’s trade-off between noise at low field magnitudes and the nonlinearity of the response at higher field magnitudes. We then apply the Booth equation to describe the nonlinear response of both fluids at low frequency (0.1 GHz) and high field magnitude (up to 0.5 V/Å). We develop a model ofmore » the frequency-dependent nonlinear response by combining the Booth description of the static nonlinear dielectric response of fluids with the frequency-dependent linear dielectric response of the Debye model. We find good agreement between our model and the MD simulations of the nonlinear dielectric response for both acetonitrile and water.« less
  3. Solvent effects determine the sign of the charges of maximum entropy and capacitance at silver electrodes

    Fully harnessing electrochemical interfaces for reactions requires a detailed understanding of solvent effects in the electrochemical double layer. Predicting the significant impact of solvents on entropic and electronic properties of electrochemical interfaces has remained an open challenge of computational electrochemistry. Using molecular dynamics simulations of silver–water and silver–acetonitrile interfaces, we show that switching the solvent changes the signs for both the charge of maximum capacitance (CMC) and charge of maximum entropy (CME). Contrasting the capacitance and CME behavior of these two interfaces, we demonstrate that the preferred orientation of the solvent molecule and the corresponding charge density determine the sign ofmore » the CMC and CME and, hence, the qualitatively different charge asymmetry of the electrochemical interface.« less
  4. Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface

    Atomistic simulation of the electrochemical double layer is an ambitious undertaking, requiring quantum mechanical description of electrons, phase space sampling of liquid electrolytes, and equilibration of electrolytes over nanosecond time scales. All models of electrochemistry make different trade-offs in the approximation of electrons and atomic configurations, from the extremes of classical molecular dynamics of a complete interface with point-charge atoms to correlated electronic structure methods of a single electrode configuration with no dynamics or electrolyte. Here, we review the spectrum of simulation techniques suitable for electrochemistry, focusing on the key approximations and accuracy considerations for each technique. We discuss promisingmore » approaches, such as enhanced sampling techniques for atomic configurations and computationally efficient beyond density functional theory (DFT) electronic methods, that will push electrochemical simulations beyond the present frontier.« less
  5. Interfacial water asymmetry at ideal electrochemical interfaces

    Controlling electrochemical reactivity requires a detailed understanding of the charging behavior and thermodynamics of the electrochemical interface. Experiments can independently probe the overall charge response of the electrochemical double layer by capacitance measurements and the thermodynamics of the inner layer with potential of maximum entropy measurements. Relating these properties by computational modeling of the electrochemical interface has so far been challenging due to the low accuracy of classical molecular dynamics (MD) for capacitance and the limited time and length scales of ab initio MD. Here, we combine large ensembles of long-time-scale classical MD simulations with charge response from electronic densitymore » functional theory to predict the potential-dependent capacitance of a family of ideal aqueous electrochemical interfaces with different peak capacitances. We show that while the potential of maximum capacitance varies, this entire family exhibits an electrode charge of maximum capacitance (CMC) between -2.9 and -2.2 μC/cm2, regardless of the details in the electronic response. Simulated heating of the same interfaces reveals that the entropy peaks at a charge of maximum entropy (CME) of -5.1 ± 0.6 μC/cm2, in agreement with experimental findings for metallic electrodes. The CME and CMC both indicate asymmetric response of interfacial water that is stronger for negatively charged electrodes, while the difference between CME and CMC illustrates the richness in behavior of even the ideal electrochemical interface.« less
  6. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations

    Here, reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric andmore » ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.« less
  7. Computationally efficient dielectric calculations of molecular crystals

    The microscopic dielectric response is a key quantity for electronic materials such as organic semiconductors. Calculations of this response for molecular crystals are currently either expensive or rely on extreme simplifications such as multipole expansions which lack microscopic detail. We present an alternate approach using a microscopic analogue of the Clausius-Mossotti equation, which constructs the dielectric response of a crystal from an eigenvalue decomposition of the dielectric response of individual molecules. Here, this method can potentially be used to examine the effects of defects, disorder, and surfaces on the dielectric properties of molecular solids.

Search for:
All Records
Author / Contributor
0000000215394511

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization