skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Assessing the Atmospheric Response to Subgrid Surface Heterogeneity in the Single-Column Community Earth System Model, Version 2 (CESM2)

    Land-atmosphere interactions are central to the evolution of the atmospheric boundary layer and the subsequent formation of clouds and precipitation. Existing global climate models represent these connections with bulk approximations on coarse spatial scales, but observations suggest that small-scale variations in surface characteristics and co-located turbulent and momentum fluxes can significantly impact the atmosphere. Recent model development efforts have attempted to capture this phenomenon by coupling existing representations of subgrid-scale (SGS) heterogeneity between land and atmosphere models. Such approaches are in their infancy and it is not yet clear if they can produce a realistic atmospheric response to surface heterogeneity.more » Here, we implement a parameterization to capture the effects of SGS heterogeneity in the Community Earth System Model (CESM2), and compare single-column simulations against high-resolution Weather Research and Forecasting (WRF) large-eddy simulations (LESs), which we use as a proxy for observations. The CESM2 experiments increase the temperature and humidity variances in the lowest atmospheric levels, but the response is weaker than in WRF-LES. In part, this is attributed to an underestimate of surface heterogeneity in the land model due to a lack of SGS meteorology, a separation between deep and shallow convection schemes in the atmosphere, and a lack of explicitly represented mesoscale secondary circulations. These results highlight the complex processes involved in capturing the effects of SGS heterogeneity and suggest the need for parameterizations that communicate their influence not only at the surface but also vertically.« less
  2. Removing Numerical Pathologies in a Turbulence Parameterization Through Convergence Testing

    Discretized numerical models of the atmosphere are usually intended to faithfully represent an underlying set of continuous equations, but this necessary condition is violated sometimes by subtle pathologies that have crept into the discretized equations. Such pathologies can introduce undesirable artifacts, such as sawtooth noise, into the model solutions. The presence of these pathologies can be detected by numerical convergence testing. This study employs convergence testing to verify the discretization of the Cloud Layers Unified By Binormals (CLUBB) model of clouds and turbulence. That convergence testing identifies two aspects of CLUBB's equation set that contribute to undesirable noise in themore » solutions. First, numerical limiters (i.e. clipping) used by CLUBB introduce discontinuities or slope discontinuities in model fields. Second, nonlinear numerical diffusion employed for improving numerical stability can introduce unintended small-scale features into the solution of the model equations. Smoothing the limiters and using linear diffusion (low-order hyperdiffusion) reduces the noise and restores the expected first-order convergence in CLUBB's solutions. These model reformulations enhance our confidence in the trustworthiness of solutions from CLUBB by eliminating the unphysical oscillations in high-resolution simulations. The improvements in the results at coarser, near-operational grid spacing and timestep are also seen in cumulus cloud and dry turbulence tests. In addition, convergence testing is proven to be a valuable tool for detecting pathologies, including unintended discontinuities and grid dependence, in the model equation set.« less
  3. Representing surface heterogeneity in land–atmosphere coupling in E3SMv1 single-column model over ARM SGP during summertime

    The Earth’s land surface features spatial and temporal heterogeneity over a wide range of scales below those resolved by current Earth system models (ESMs). State-of-the-art land and atmosphere models employ parameterizations to represent their subgrid heterogeneity, but the land-atmosphere coupling in ESMs typically operates on the grid scale. Communicating the information on the land surface heterogeneity with the overlying atmospheric boundary layer (ABL) remains a challenge in modeling land-atmosphere interactions. In order to account for the subgrid-scale heterogeneity in land-atmosphere coupling, we implement a new coupling scheme in the Energy Exascale Earth system model version 1 (E3SMv1) that uses adjustedmore » surface variances and covariance of potential temperature and specific water content as the lower boundary condition for the atmosphere model. The new lower boundary condition accounts for both the variability of individual subgrid land surface patches and the inter-patch variability. The E3SMv1 single-column model (SCM) simulations over the Atmospheric Radiation Measurement (ARM) Southern Great Plain (SGP) site were performed to assess the impacts. We find that the new coupling parameterization increases the magnitude and diurnal cycle of the temperature variance and humidity variance in the lower ABL on non-precipitating days. The im- pacts are primarily attributed to subgrid inter-patch variability rather than the variability of individual patches. These effects extend vertically from the surface to several levels in the lower ABL on clear days. We also find that accounting for surface heterogeneity increases low cloud cover and liquid water path (LWP). These cloud changes are associated with the change in cloud regime indicated by the skewness of the probability density function (PDF) of the subgrid vertical velocity. In precipitating days, the inter-patch variability reduces significantly so that the impact of accounting for surface heterogeneity vanishes. These results highlight the importance of accounting for subgrid heterogeneity in land-atmosphere coupling in next-generation ESMs.« less
  4. CondiDiag1.0: a flexible online diagnostic tool for conditional sampling and budget analysis in the E3SM atmosphere model (EAM)

    Abstract. Numerical models used in weather and climate prediction take into account a comprehensive set of atmospheric processes (i.e., phenomena) such as the resolved and unresolved fluid dynamics, radiative transfer, cloud and aerosol life cycles, and mass or energy exchanges with the Earth's surface. In order to identify model deficiencies and improve predictive skills, it is important to obtain process-level understanding of the interactions between different processes. Conditional sampling and budget analysis are powerful tools for process-oriented model evaluation, but they often require tedious ad hoc coding and large amounts of instantaneous model output, resulting in inefficient use of humanmore » and computing resources. This paper presents an online diagnostic tool that addresses this challenge by monitoring model variables in a generic manner as they evolve within the time integration cycle. The tool is convenient to use. It allows users to select sampling conditions and specify monitored variables at run time. Both the evolving values of the model variables and their increments caused by different atmospheric processes can be monitored and archived. Online calculation of vertical integrals is also supported. Multiple sampling conditions can be monitored in a single simulation in combination with unconditional sampling. The paper explains in detail the design and implementation of the tool in the Energy Exascale Earth System Model (E3SM) version 1. The usage is demonstrated through three examples: a global budget analysis of dust aerosol mass concentration, a composite analysis of sea salt emission and its dependency on surface wind speed, and a conditionally sampled relative humidity budget. The tool is expected to be easily portable to closely related atmospheric models that use the same or similar data structures and time integration methods.« less
  5. The DOE E3SM Model Version 2: Overview of the Physical Model and Initial Model Evaluation

    This work documents version two of the Department of Energy's Energy Exascale Earth System Model (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance is evaluated withmore » Coupled Model Intercomparison Project Phase 6 Diagnosis, Evaluation, and Characterization of Klima simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate has many realistic features of the climate system, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Program assessment. However, a number of important biases remain including a weak Atlantic Meridional Overturning Circulation, deficiencies in the characteristics and spectral distribution of tropical atmospheric variability, and a significant underestimation of the observed warming in the second half of the historical period. An analysis of single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.« less
  6. Reconciling and Improving Formulations for Thermodynamics and Conservation Principles in Earth System Models (ESMs)

    Abstract This paper provides a comprehensive derivation of the total energy equations for the atmospheric components of Earth System Models (ESMs). The assumptions and approximations made in this derivation are motivated and discussed. In particular, it is emphasized that closing the energy budget is conceptually challenging and hard to achieve in practice without resorting to ad hoc fixers. As a concrete example, the energy budget terms are diagnosed in a realistic climate simulation using a global atmosphere model. The largest total energy errors in this example are spurious dynamical core energy dissipation, thermodynamic inconsistencies (e.g., coupling parameterizations with the hostmore » model) and missing processes/terms associated with falling precipitation and evaporation (e.g., enthalpy flux between components). The latter two errors are not, in general, reduced by increasing horizontal resolution. They are due to incomplete thermodynamic and dynamic formulations. Future research directions are proposed to reconcile and improve thermodynamics formulations and conservation principles.« less
  7. Removing numerical pathologies in a turbulence parameterization through convergence testing

    Discretized numerical models of the atmosphere are usually intended to faithfully represent an underlying set of continuous equations, but this necessary condition is violated sometimes by subtle pathologies that have crept into the discretized equations. Such pathologies can introduce undesirable artifacts, such as sawtooth noise, into the model solutions. The presence of these pathologies can be detected by numerical convergence testing. This study employs convergence testing to verify the discretization of the Cloud Layers Unified By Binormals (CLUBB) model of clouds and turbulence. That convergence testing identifies two aspects of CLUBB's equation set that contribute to undesirable noise in themore » solutions. First, numerical limiters (i.e. clipping) used by CLUBB introduce discontinuities or slope discontinuities in model fields. Second, this noise can be amplified by an advective term in CLUBB's background diffusion. Smoothing the limiters and removing the advective component of the background diffusion reduces the noise and restores the expected first-order convergence in CLUBB's solutions. These model reformulations improve the results at coarser, near-operational grid spacing and time step in cumulus cloud and dry turbulence tests. In addition, convergence testing is proved to be a valuable tool for detecting pathologies, including unintended discontinuities and grid dependence, in the model equation set.« less
  8. Aircraft Observations of Turbulence in Cloudy and Cloud‐Free Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for the Earth System Model Evaluation and Development

    Abstract This study examines boundary layer turbulence derived from high temporal resolution meteorological measurements from 40 research flights over the western North Atlantic Ocean during the 2020 deployments of ACTIVATE. Frequency distributions of various turbulent quantities reveal stronger turbulence during the winter deployment than in summer and for cloud‐topped than in cloud‐free boundary layers during the summer deployment. Maximum turbulence kinetic energy (TKE) is most often within cloud from observations in winter and summer, whereas it is mostly below cloud in both seasons by a global model turbulence parameterization. Bivariate frequency distributions are consistent with the bivariate Gaussian probability distributionmore » functions assumed for the closure of higher‐order turbulence/shallow convection parameterizations used by some global models. Turbulence simulated by the Community Atmosphere Model version 6 and the Energy Exascale Earth System Model Atmosphere Model version 2 using such parameterizations is not as strong as observed, with more TKE going into vertical wind perturbations rather than into zonal wind perturbations as observed, suggesting that the treatment of turbulence in Earth system models still needs to be further improved.« less
  9. Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1

    Abstract. This study assesses the relative importance of time integration error in present-day climate simulations conducted with the atmosphere component of the Energy Exascale Earth System Model version 1 (EAMv1) at 1∘ horizontal resolution. We show that a factor-of-6 reduction of time step size in all major parts of the model leads to significant changes in the long-term mean climate. Examples of changes in 10-year mean zonal averages include the following: up to 0.5 K of warming in the lower troposphere and cooling in the tropical and subtropical upper troposphere, 1 %–10 % decreases in relative humidity throughout the troposphere, and 10 %–20 % decreasesmore » in cloud fraction in the upper troposphere and decreases exceeding 20 % in the subtropical lower troposphere. In terms of the 10-year mean geographical distribution, systematic decreases of 20 %–50 % are seen in total cloud cover and cloud radiative effects in the subtropics. These changes imply that the reduction of temporal truncation errors leads to a notable although unsurprising degradation of agreement between the simulated and observed present-day climate; to regain optimal climate fidelity in the absence of those truncation errors, the model would require retuning. A coarse-grained attribution of the time step sensitivities is carried out by shortening time steps used in various components of EAM or by revising the numerical coupling between some processes. Our analysis leads to the finding that the marked decreases in the subtropical low-cloud fraction and total cloud radiative effect are caused not by the step size used for the collectively subcycled turbulence, shallow convection, and stratiform cloud macrophysics and microphysics parameterizations but rather by the step sizes used outside those subcycles. Further analysis suggests that the coupling frequency between the subcycles and the rest of EAM significantly affects the subtropical marine stratocumulus decks, while deep convection has significant impacts on trade cumulus. The step size of the cloud macrophysics and microphysics subcycle itself appears to have a primary impact on cloud fraction in the upper troposphere and also in the midlatitude near-surface layers. Impacts of step sizes used by the dynamical core and the radiation parameterization appear to be relatively small. These results provide useful clues for future studies aiming at understanding and addressing the root causes of sensitivities to time step sizes and process coupling frequencies in EAM. While this study focuses on EAMv1 and the conclusions are likely model-specific, the presented experimentation strategy has general value for weather and climate model development, as the methodology can help researchers identify and understand sources of time integration error in sophisticated multi-component models.« less
  10. A Parameterization of Turbulent Dissipation and Pressure Damping Time Scales in Stably Stratified Inversions, and its Effects on Low Clouds in Global Simulations

    Abstract It is difficult for coarse‐resolution global models of the atmosphere to accurately simulate the observed distribution of low clouds. In particular, it is difficult for moist turbulence closure models to simulate sufficiently bright near‐coastal stratocumulus (Sc) without simulating overly bright marine shallow cumuli (Cu). To parameterize bright Sc, a turbulence parameterization must damp the turbulent fluxes of heat and moisture above cloud top in order to prevent excessive entrainment of dry air into cloud top. To parameterize dim shallow Cu, the subgrid variances of temperature and moisture must remain large, in order to permit partial cloudiness. However, damping themore » fluxes but not the variances just above cloud top is difficult if a parameterization uses a single “master” time scale to damp both. In nature, the above‐cloud fluxes are damped by pressure fluctuations, whereas scalar variances are damped by a different process, namely, turbulent dissipation. In a stably stratified inversion above cloud, pressure damping is large but turbulent dissipation is small. To avoid this problem, a multitime scale parameterization for damping has been developed. The damping parameterization has been implemented in a global model and evaluated. The parameterization is capable of dimming shallow Cu while producing adequately bright Sc.« less
...

Search for:
All Records
Author / Contributor
0000000205868525

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization