skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity

    Multicomponent alloying has displayed extraordinary potential for producing exceptional structural and functional materials. However, the synthesis of single-phase, multi-principal covalent compounds remains a challenge. Here, we present a diffusion-controlled alloying strategy for the realization of covalent multi-principal transition metal carbides (MPTMCs) with a single face-centered cubic phase. The increased interfacial diffusion promoted by the addition of a nonstoichiometric compound leads to rapid formation of the single phase at much lower sintering temperature. Direct atomic-level observations via scanning transmission electron microscopy demonstrate that MPTMCs are composed of a single phase with a random distribution of all cations, which holds the keymore » to the unique combinations of improved fracture toughness, superior Vickers hardness, and extremely lower thermal diffusivity achieved in MPTMCs. The present discovery provides a promising approach toward the design and synthesis of next-generation high-performance materials.« less
  2. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Polycrystalline diamond has been successfully synthesized on silicon substrates at atmospheric pressure using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ and Hα were observed in emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Furthermore, field emission scanning electron microscopy (SEM) images revealmore » that, depending on the on growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.« less
  3. Pressure-induced polymerization of P(CN) 3

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN)3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder Xray diffraction (PXRD) measurements taken during compression show that molecular P(CN)3 is highly compressible with a bulk modulus of 10.0±0.3 GPa and polymerizes into an amorphous solid above ~10.0 GPa. Raman and infrared (IR) spectra, together with first-principlesmore » molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp2 character, similar to known carbon nitrides, resulting in a novel PCN polymeric phase, which is recoverable to ambient pressure.« less

Search for:
All Records
Author / Contributor
0000000204668564

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization