skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. A hybrid topological quantum state in an elemental solid

    Topology and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three important research directions: (1) the competition between distinct interactions, as in several intertwined phases, (2) the interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and (3) the coalescence of several topological orders to generate distinct novel phases. The first two examples have grown into major areas of research, although the last example remains mostly unexplored, mainly because of the lack of a material platform for experimental studies. Here, using tunnelling microscopy, photoemission spectroscopy and amore » theoretical analysis, we unveil a ‘hybrid’ topological phase of matter in the simple elemental-solid arsenic. Through a unique bulk-surface-edge correspondence, we uncover that arsenic features a conjoined strong and higher-order topology that stabilizes a hybrid topological phase. Although momentum-space spectroscopy measurements show signs of topological surface states, real-space microscopy measurements unravel a unique geometry of topologically induced step-edge conduction channels revealed on various natural nanostructures on the surface. Using theoretical models, we show that the existence of gapless step-edge states in arsenic relies on the simultaneous presence of both a non-trivial strong Z2 invariant and a non-trivial higher-order topological invariant, which provide experimental evidence for hybrid topology. Finally, our study highlights pathways for exploring the interplay of different band topologies and harnessing the associated topological conduction channels in engineered quantum or nano-devices.« less
  2. Quantum transport response of topological hinge modes

    Electronic topological phases are typified by the conducting surface states that exist on the boundary of an insulating three-dimensional bulk. While the transport response of the two-dimensional surface states has been studied, the quantum response of the one-dimensional hinge modes has not been demonstrated. Here we provide evidence for quantum transport in gapless topological hinge states existing within the insulating bulk and surface energy gaps in the intrinsic topological insulator α-Bi4Br4. Our magnetoresistance measurements reveal pronounced Aharonov–Bohm oscillations that are periodic in h/e (where h denotes Planck’s constant and e is the electron charge). The observed periodicity evinces quantum interferencemore » of electrons circumnavigating around the hinges. We also demonstrate that the h/e oscillations evolve as a function of magnetic field orientation, following the interference paths along the hinge modes that are allowed by topology and symmetry. Furthermore, our findings reveal the quantum transport response of topological hinge modes with both topological nature and quantum coherence, which can eventually be applied to the development of efficient topological electronic devices.« less
  3. Causal structure of interacting Weyl fermions in condensed matter systems

    Abstract The spacetime light cone is central to the definition of causality in the theory of relativity. Recently, links between relativistic and condensed matter physics have been uncovered, where relativistic particles can emerge as quasiparticles in the energy-momentum space of matter. Here, we unveil an energy-momentum analogue of the spacetime light cone by mapping time to energy, space to momentum, and the light cone to the Weyl cone. We show that two Weyl quasiparticles can only interact to open a global energy gap if they lie in each other’s energy-momentum dispersion cones–analogous to two events that can only have amore » causal connection if they lie in each other’s light cones. Moreover, we demonstrate that the causality of surface chiral modes in quantum matter is entangled with the causality of bulk Weyl fermions. Furthermore, we identify a unique quantum horizon region and an associated ‘thick horizon’ in the emergent causal structure.« less
  4. Topological kagome magnets and superconductors

    A kagome lattice naturally features Dirac fermions, flat bands and van Hove singularities in its electronic structure. The Dirac fermions encode topology, flat bands favour correlated phenomena such as magnetism, and van Hove singularities can lead to instabilities towards long-range many-body orders, altogether allowing for the realization and discovery of a series of topological kagome magnets and superconductors with exotic properties. Recent progress in exploring kagome materials has revealed rich emergent phenomena resulting from the quantum interactions between geometry, topology, spin and correlation. Here we review these key developments in this field, starting from the fundamental concepts of a kagomemore » lattice, to the realizations of Chern and Weyl topological magnetism, to various flat-band many-body correlations, and then to the puzzles of unconventional charge-density waves and superconductivity. We highlight the connection between theoretical ideas and experimental observations, and the bond between quantum interactions within kagome magnets and kagome superconductors, as well as their relation to the concepts in topological insulators, topological superconductors, Weyl semimetals and high-temperature superconductors. In conclusion, these developments broadly bridge topological quantum physics and correlated many-body physics in a wide range of bulk materials and substantially advance the frontier of topological quantum matter.« less
  5. Imaging real-space flat band localization in kagome magnet FeSn

    Kagome lattices host flat bands due to their frustrated lattice geometry, which leads to destructive quantum interference of electron wave functions. Here, we report imaging of the kagome flat band localization in real-space using scanning tunneling microscopy. We identify both the Fe3Sn kagome lattice layer and the Sn2 honeycomb layer with atomic resolution in kagome antiferromagnet FeSn. On the Fe3Sn lattice, at the flat band energy determined by the angle resolved photoemission spectroscopy, tunneling spectroscopy detects an unusual state localized uniquely at the Fe kagome lattice network. We further show that the vectorial in-plane magnetic field manipulates the spatial anisotropymore » of the localization state within each kagome unit cell. Our results are consistent with the real-space flat band localization in the magnetic kagome lattice. We further discuss the magnetic tuning of flat band localization under the spin–orbit coupled magnetic kagome lattice model.« less
  6. Tunable unconventional kagome superconductivity in charge ordered RbV3Sb5 and KV3Sb5

    Unconventional superconductors often feature competing orders, small super fluid density, and nodal electronic pairing. While unusual superconductivity has been proposed in the kagome metals AV3Sb5, key spectroscopic evidence has remained elusive. Here we utilize pressure-tuned and ultra-low temperature muon spin spectroscopy to uncover the unconventional nature of super conductivity in RbV3Sb5 and KV3Sb5. At ambient pressure, we observed time reversal symmetry breaking charge order below $${T}_{1}^{*}$$ ≃ 110 K in RbV3Sb5 with an additional transition at $${T}_{2}^{*}$$ ≃ 50 K. Remarkably, the superconducting state displays a nodal energy gap and a reduced superfluid density, which can be attributed to themore » competition with the charge order. Upon applying pressure, the charge-order transitions are suppressed, the superfluid density increases, and the superconducting state progressively evolves from nodal to nodeless. Once optimal superconductivity is achieved, we find a superconducting pairing state that is not only fully gapped, but also spontaneously breaks time-reversal symmetry. Our results point to unprecedented tunable nodal kagome super conductivity competing with time-reversal symmetry-breaking charge order and offer unique insights into the nature of the pairing state.« less
  7. Discovery of charge density wave in a kagome lattice antiferromagnet

    A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity. Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons, non-trivial topology, chiral magnetic order, superconductivity and CDW order. Althoughmore » CDW has been found in weakly electron-correlated non-magnetic AV3Sb5 (A = K, Rb, Cs), it has not yet been observed in correlated magnetic-ordered kagome lattice metals. Here, in this study, we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe. The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5, enhances the AFM ordered moment and induces an emergent anomalous Hall effect. Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase, in stark contrast to strongly correlated copper oxides and nickelates, in which the CDW precedes or accompanies the magnetic order.« less
  8. Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator

    Room-temperature realization of macroscopic quantum phases is one of the major pursuits in fundamental physics. The quantum spin Hall phase is a topological quantum phase that features a two-dimensional insulating bulk and a helical edge state. Here we use vector magnetic field and variable temperature based scanning tunnelling microscopy to provide micro-spectroscopic evidence for a room-temperature quantum spin Hall edge state on the surface of the higher-order topological insulator Bi4Br4. Here, we find that the atomically resolved lattice exhibits a large insulating gap of over 200 meV, and an atomically sharp monolayer step edge hosts an in-gap gapless state, suggestingmore » topological bulk–boundary correspondence. An external magnetic field can gap the edge state, consistent with the time-reversal symmetry protection inherent in the underlying band topology. We further identify the geometrical hybridization of such edge states, which not only supports the Z2 topology of the quantum spin Hall state but also visualizes the building blocks of the higher-order topological insulator phase. Our results further encourage the exploration of high-temperature transport quantization of the putative topological phase reported here.« less
  9. Observation of a linked-loop quantum state in a topological magnet

    Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids, magnets, the quantum Hall effect, topological insulators, Weyl semimetals and other phenomena. Here we report an unusual linking-number (knot theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromagnet. Using state-of-the-art spectroscopic methods, we directly observe three intertwined degeneracy loops in the material's three-torus, T3, bulk Brillouin zone. We find that each loop links eachmore » other loop twice. Through systematic spectroscopic investigation of this linked-loop quantum state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it exhibits the linking number (2, 2, 2), providing a direct determination of the invariant structure from the experimental data. Here we further predict and observe, on the surface of our samples, Seifert boundary states protected by the bulk linked loops, suggestive of a remarkable Seifert bulk-boundary correspondence. Our observation of a quantum loop link motivates the application of knot theory to the exploration of magnetic and superconducting quantum matter.« less
  10. Low-temperature magnetic crossover in the topological kagome magnet TbMn6Sn6

    Magnetic topological phases of quantum matter are an emerging frontier in physics and materials science, of which kagome magnets appear as a highly promising platform. Here, we explore magnetic correlations in the recently identified topological kagome system TbMn6Sn6 using muon spin rotation, combined with local field analysis and neutron diffraction. Our studies identify an out-of-plane ferrimagnetic structure with slow magnetic fluctuations which exhibit a critical slowing down below $$T^{*}_{C1}$$ ≃ 120 K and finally freeze into static patches with ideal out-of-plane order below TC1 ≃ 20 K. We further show that hydrostatic pressure of 2.1 GPa stabilises the static out-of-planemore » topological ferrimagnetic ground state in the whole volume of the sample. Therefore the exciting perspective arises of a magnetically-induced topological system whose magnetism can be controlled through external parameters. The present results will stimulate theoretical investigations to obtain a microscopic understanding of the relation between the low-temperature volume-wise magnetic evolution of the static c-axis ferrimagnetic patches and the topological electronic properties in TbMn6Sn6.« less
...

Search for:
All Records
Author / Contributor
0000000197303128

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization