skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Generation of coherent phonons by coherent extreme ultraviolet radiation in a transient grating experiment

    In this work, we investigate the excitation of coherent acoustic and optical phonons by ultrashort extreme ultraviolet (EUV) pulses produced by a free electron laser. Two crossed femtosecond EUV (wavelength 12.7 nm) pulses are used to excite coherent phonons at a wavelength of 280 nm, which are detected via diffraction of an optical probe beam. Longitudinal and surface acoustic waves are measured in BK-7 glass, diamond, and Bi4Ge3O12; in the latter material, the excitation of a coherent optical phonon mode is also observed. We discuss probing different acoustic modes in reflection and transmission geometries and frequency mixing of surface andmore » bulk acoustic waves in the signal. The use of extreme ultraviolet radiation will allow the creation of tunable GHz to THz acoustic sources in any material without the need to fabricate transducer structures.« less
  2. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings

    Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements onmore » both “solid” and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.« less

Search for:
All Records
Author / Contributor
0000000194960261

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization