skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Cumulative Spatial Impact Layers: A Novel Multivariate Spatio-Temporal Analytical Summarization Tool

    Abstract Scientific inquiry often requires analysis of multiple spatio‐temporal datasets, ranging in type and size, using complex multi‐step processes demanding an understanding of GIS theory and software. Cumulative spatial impact layers (CSIL) is a GIS‐based tool that summarizes spatio‐temporal datasets based on overlapping features and attributes. Leveraging a recursive quadtree method, and applying multiple additive frameworks, the CSIL tool allows users to analyze raster and vector datasets by calculating data, record, or attribute density. Providing an efficient and robust method for summarizing disparate, multi‐format, multi‐source geospatial data, CSIL addresses the need for a new integration approach and resulting geospatial product.more » The built‐in flexibility of the CSIL tool allows users to answer a range of spatially driven questions. Example applications are provided in this article to illustrate the versatility and variety of uses for this CSIL tool and method. Use cases include addressing regulatory decision‐making needs, economic modeling, and resource management. Performance reviews for each use case are also presented, demonstrating how CSIL provides a more efficient and robust approach to assess a range of multivariate spatial data for a variety of uses.« less
  2. Approach for assessing coastal vulnerability to oil spills for prevention and readiness using GIS and the Blowout and Spill Occurrence Model

    Increasing interest in offshore hydrocarbon exploration has pushed the operational fronts associated with exploration efforts further offshore into deeper waters and more uncertain subsurface settings. This has become particularly common in the U.S. Gulf of Mexico. In this study we develop a spatial vulnerability approach and example assessment to support future spill prevention and improve future response readiness. This effort, which is part of a larger integrated assessment modeling spill prevention effort, incorporated economic and environmental data, and utilized a novel new oil spill simulation model from the U.S. Department of Energy’s National Energy Technology Laboratory, the Blowout and Spillmore » Occurrence Model (BLOSOM). Specifically, this study demonstrated a novel approach to evaluate potential impacts of hypothetical spill simulations at varying depths and locations in the northern Gulf of Mexico. The simulations are analyzed to assess spatial and temporal trends associated with the oil spill. The approach itself demonstrates how these data, tools and techniques can be used to evaluate potential spatial vulnerability of Gulf communities for various spill scenarios. Results of the hypothetical scenarios evaluated in this study suggest that under conditions like those simulated, a strong westward push by ocean currents and tides may increase the impacts of deep water spills along the Texas coastline, amplifying the vulnerability of communities on the local barrier islands. Ultimately, this approach can be used further to assess a range of conditions and scenarios to better understand potential risks and improve informed decision making for operators, responders, and stakeholders to support spill prevention as well as response readiness.« less

Search for:
All Records
Author / Contributor
0000000193004892

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization