skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Energetic particle optimization of quasi-axisymmetric stellarator equilibria

    Absmore » tract An important goal of stellarator optimization is to achieve good confinement of energetic particles such as, in the case of a reactor, alphas created by deuterium–tritium fusion. In this work, a fixed-boundary stellarator equilibrium was re-optimized for energetic particle confinement via a two-step process: first, by minimizing deviations from quasi-axisymmetry (QA) on a single flux surface near the mid-radius, and secondly by maintaining this improved QA while minimizing the analytical quantity Γ C , which represents the angle between magnetic flux surfaces and contours of J | | , the second adiabatic invariant. This was performed multiple times, resulting in a group of equilibria with significantly reduced energetic particle losses, as evaluated by Monte Carlo simulations of alpha particles in scaled-up versions of the equilibria. This is the first time that energetic particle losses in a QA stellarator have successfully been reduced by optimizing Γ C . The relationship between energetic particle losses and metrics such as QA error ( E q a ) and Γ C in this set of equilibria were examined via statistical methods and a nearly linear relationship between volume-averaged Γ C and prompt particle losses was found.« less
  2. Conceptual Design of a Scintillator-Based Fast-Ion Loss Detector for the Wendelstein 7-X Stellarator

    Here, a conceptual design of a scintillator-based fast-ion loss detector (FILD) has been developed for the Wendelstein 7-X stellarator (W7-X). Simulations using the Monte Carlo codes ASCOT5 and BEAMS3D have been performed to calculate the expected flux of neutral beam injection (NBI)-generated fast hydrogen ions onto the conceptual detector probe head. These fast-ion loss fluxes have been calculated for several magnetic field configurations as well as probe insertion positions. At the maximum insertion position, both co-and counter-going losses with high incident pitch angles are observed; however, at retracted positions, only co-going fast ions reach the probe head. The FILDSIM codemore » has been used to optimize the geometry of the detector entrance and collimating elements to achieve a wide velocity space coverage as well as a high velocity–space resolution. A synthetic FILD signal is calculated for the expected loss distribution via forward modeling using the instrument response function. The synthetic signal is found to largely retain the velocity space features of the loss distribution.« less
  3. Analysis of hydrogen fueling, recycling, and confinement at Wendelstein 7-X via a single-reservoir particle balance

    Absmore » tract A single-reservoir particle balance for the main plasma species hydrogen has been established for W7-X. This has enabled the quantitative characterization of the particle sources in the standard island divertor configuration for the first time. Findings from attached scenarios with two different island sizes with a boronized wall and turbo molecular pumping are presented. Fueling efficiencies, particle flows and source locations were measured and used to infer the total particle confinement time τ p . Perturbative gas injection experiments served to measure the effective particle confinement time τ p * . Combining both confinement times provides access to the global recycling coefficient R ¯ . Hydrogen particle inventories have been addressed and the knowledge of particle sources and sinks reveals the core fueling distribution and provides insight into the capability of the magnetic islands to control exhaust features. Measurements of hydrogen fueling efficiencies were sensitive to the precise fueling location and measured between 12% and 31% with the recycling fueling at the strike line modeled at only 6%, due to much higher densities. 15% of the total 5.2 × 10 22 a/s recycling flow ionizes far away from the recycling surfaces in the main chamber. It was shown that 60% of recycled particles ionize above the horizontal and 18% above the vertical divertor target, while the remainder of the recycling flow ionizes above the baffle (7%). Combining these source terms with their individual fueling efficiencies resolves the core fueling distribution. Due to the higher fueling efficiency in the main chamber, up to 51% of the total 5.1 × 10 21  s −1 core fueling particles are entering the confined plasma from the main chamber. τ p values in the range of 260 ms were extracted for these discharges. Together with τ p , the global recycling coefficient R ¯ was resolved for every τ p * measurement and a typical value close to unity was obtained. An increase of the island size, resulted in no change of τ p , but doubled τ p * , indicating the feasibility of the control coils as an actuator to control exhaust features without affecting core confinement properties.« less
  4. Simulating fusion alpha heating in a stellarator reactor

    Gyrocenter following simulations of fusion born alpha particles in a stellarator reactor are preformed using the BEAMS3D code. The Wendelstein 7-X high mirror configuration is scaled in geometry and magnetic field to reactor relevant parameters. A $$2\,\times\,10^{20}m^{-3}$$ density plasma with 20 keV core temperatures is assumed and fusion birth rates calculated for various fusion products assuming a 50/50 deuterium-tritium mixture. It is found that energetic He4 ions comprise the vast majority of the energetic particle inventory. Slowing down simulations of the He4 population suggest plasma heating consistent with scaled energy confinement times for a stellarator reactor. Losses for this configurationmore » appear large suggesting optimization beyond the scope of the W7-X device is key to a future fusion reactor. These first simulations are designed to demonstrate the capability of the BEAMS3D code to provide fusion alpha birth and heating profiles for stellarator reactor designs.« less
  5. Magnetic configuration scans during divertor operation of Wendelstein 7-X

    Wendelstein 7-X (W7-X) (Greifswald, Germany) is an advanced stellarator, which uses the modular coil concept to realize a magnetic configuration optimized for fusion-relevant plasma properties. The magnet system of the machine allows a variation of the rotational transform (iota) at the boundary. In the latest W7-X operational phase a dedicated configuration scan has been performed varying the rotational transform between magnetic configurations with iota = 5/4 and iota = 5/5 at the boundary. This paper presents an overview of the experiments and of the main results with respect to confinement and stability. The main observation is an increase of themore » plasma energy in several intermediate configurations of the scan when the 5/5-islands are close to the plasma boundary but still inside the last-closed-flux-surface. In addition, these configurations showed marked MHD-activity with a crashing behavior related to the 5/5-islands. The corresponding mode amplitude was correlated with the size of the internal 5/5 islands.« less
  6. Overview of the results from divertor experiments with attached and detached plasmas at Wendelstein 7-X and their implications for steady-state operation

    Wendelstein 7-X (W7-X), the largest advanced stellarator, is built to demonstrate high power, high performance quasi-continuous operation. Therefore, in the recent campaign, experiments were performed to prepare for long pulse operation, addressing three critical issues: the development of stable detachment, control of the heat and particle exhaust, and the impact of leading edges on plasma performance. The heat and particle exhaust in W7-X is realized with the help of an island divertor, which utilizes large magnetic islands at the plasma boundary. This concept shows very efficient heat flux spreading and favourable scaling with input power. Experiments performed to overload leadingmore » edges showed that the island divertor yields good impurity screening. A highlight of the recent campaign was a robust detachment scenario, which allowed reducing power loads even by a factor of ten. At the same time, neutral pressures at the pumping gap entrance yielded the particle removal rate close to the values required for stable density control in steady-state operation.« less
  7. Confinement in electron heated plasmas in Wendelstein 7-X and ASDEX Upgrade; the necessity to control turbulent transport

    In electron (cyclotron) heated plasmas, in both ASDEX Upgrade (L-mode) and Wendelstein 7-X, clamping of the ion temperature occurs at $$T_\mathrm{i}$$ ~ 1.5 keV independent of magnetic configuration. The ions in such plasmas are heated through the energy exchange power as $${n}_{\mathrm{e}}^{2}({T}_{\mathrm{e}}-{T}_{\mathrm{i}})/{T}_{\mathrm{e}}^{3/2}$$, which offers a broad ion heating profile, similar to that offered by alpha heating in future thermonuclear fusion reactors. However, the predominant electron heating may put an additional constraint on the ion heat transport, as the ratio $$T_\mathrm{e}T_\mathrm{i}$$ > 1 can exacerbates ITG/TEM core turbulence. Therefore, in practical terms the strongly 'stiff' core transport translates into Ti-clamping inmore » electron heated plasmas. Due to this clamping, electron heated L-mode scenarios, with standard gas fueling, in either tokamaks or stellarators may struggle to reach high normalized ion temperature gradients required in a compact fusion reactor. The comparison shows that core heat transport in neoclassically optimized stellarators is driven by the same mechanisms as in tokamaks. The absence of a strong H-mode temperature edge pedestal in stellarators, sofar (which, like in tokamaks, could lift the clamped temperature-gradients in the core), puts a strong requirement on reliable and sustainable core turbulence suppression techniques in stellarators.« less
  8. First neutral beam experiments on Wendelstein 7-X

    In the previous divertor campaign, the Wendelstein 7-X (W7-X) device injected 3.6 MW of neutral beam heating power allowing for the achievement of densities approaching 2 × 1020 m-3, and providing the first initial assessment of fast ion confinement in a drift optimized stellarator. The neutral beam injection (NBI) system on W7-X is comprised of two beam boxes with space for four radio frequency sources each. The 3.6 MW of heating reported in this work was achieved with two sources in the NI21 beam box. The effect of combined electron-cyclotron resonance heating (ECRH) and NBI was explored through a seriesmore » of discharges varying both NBI and ECRH power. Discharges without ECRH saw a linear increase in the line-integrated plasma density, and strong peaking of the core density, over the discharge duration. The presence of 1 MW of ECRH power was found to be sufficient to control a continuous density rise during NBI operation. Simulations of fast ion wall loads were found to be consistent with experimental infrared camera images during operation. In general, NBI discharges were free from the presence of fast ion induced Alfvénic activity, consistent with low beam betas. These experiments provide data for future scenario development and initial assessment of fast-ion confinement in W7-X, a key topic of the project.« less
  9. Ion temperature clamping in Wendelstein 7-X electron cyclotron heated plasmas

    The neoclassical transport optimization of the Wendelstein 7-X stellarator has not resulted in the predicted high energy confinement of gas fueled electron-cyclotron-resonance-heated (ECRH) plasmas as modelled in (Turkin et al 2011 Phys. Plasmas 18 022505) due to high levels of turbulent heat transport observed in the experiments. The electron-turbulent-heat transport appears non-stiff and is of the electron temperature gradient (ETG)/ion temperature gradient (ITG) type (Weir et al 2021 Nucl. Fusion 61 056001). As a result, the electron temperature Te can be varied freely from 1 keV–10 keV within the range of PECRH = 1–7 MW, with electron density ne valuesmore » from 0.1–1.5 × 1020 m–3. By contrast, in combination with the broad electron-to-ion energy-exchange heating profile in ECRH plasmas, ion-turbulent-heat transport leads to clamping of the central ion temperature at Ti ~ 1.5 keV ± 0.2 keV. In a dedicated ECRH power scan at a constant density of $$\langle n_{e} \rangle$$ = 7 × 1019 m–3, an apparent 'negative ion temperature profile stiffness' was found in the central plasma for (r/a < 0.5), in which the normalized gradient ∇Ti/Ti decreases with increasing ion heat flux. The experiment was conducted in helium, which has a higher radiative density limit compared to hydrogen, allowing a broader power scan. This 'negative stiffness' is due to a strong exacerbation of turbulent transport with an increasing ratio of Te/Ti in this electron-heated plasma. This finding is consistent with electrostatic microinstabilities, such as ITG-driven turbulence. Theoretical calculations made by both linear and nonlinear gyro-kinetic simulations performed by the GENE code in the W7-X three-dimensional geometry show a strong enhancement of turbulence with an increasing ratio of Te/Ti. The exacerbation of turbulence with increasing Te/Ti is also found in tokamaks and inherently enhances ion heat transport in electron-heated plasmas. This finding strongly affects the prospects of future high-performance gas-fueled ECRH scenarios in W7-X and imposes a requirement for turbulence-suppression techniques.« less
  10. Characterization of injection and confinement improvement through impurity induced profile modifications on the Wendelstein 7-X stellarator

    Pulsed injections of boron carbide granules into Wendelstein 7-X stellarator (W7-X) plasmas transiently increase the plasma stored energy and core ion temperatures above the reference W7-X experimental programs by up to 30%. In a series of 4 MW electron cyclotron resonance heating experiments, the PPPL Probe Mounted Powder Injector provided 50 ms bursts of 100 μm granules every 350 ms at estimated quantities ranging from approximately 1 mg/pulse to over 30 mg/pulse. For each injection, the stored energy was observed to initially drop and the radiated power transiently increased, while the radial electron density profile rose at the edge asmore » material was assimilated. Once the injected boron carbide was fully absorbed, the density rise transitioned to the core while the stored energy increased above the previous baseline level by an amount linearly correlated with the injection quantity. During the injection, the ion temperature gradient steepened with peak core ion temperatures observed to increase from a nominal 1.7 keV to over 2.6 keV for the largest injection amounts. Enhanced performance is accompanied by a reversal of the radial electric field at ρ < 0.3, indicating that the core transport has switched to the ion root. These observations are suggestive of a change in transport and provide further evidence that externally induced profile modifications provide a possible path to enhanced W7-X performance metrics.« less
...

Search for:
All Records
Author / Contributor
0000000180020121

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization