skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Validation of magnetized gas-jet experiments to investigate the effects of an external magnetic field on laser-plasma instabilities

    Laser-plasma instabilities (LPI) play a detrimental role in energy coupling to the target in inertial confinement fusion (ICF). The recent development of applied strong magnetic fields for use in ICF and laboratory astrophysics experiments has opened opportunities to investigate the role of external magnetic fields on LPIs. Recent numerical studies have shown that stimulated Raman scattering (SRS) can be mitigated by external magnetic fields in the kinetic regime of the instability and warrant systematic experimental studies to validate modelling. To this end, we design experiments at the OMEGA-EP laser facility to investigate the effect of an external perpendicular $$B$$ -fieldmore » of 5–30 T on the backscattered light spectrum from a gas-jet target. We present measurements from a proof-of-principle experiment, where the backward-SRS (BSRS) is in the kinetic regime, for which the magnetization is expected to produce the greatest effects on instability growth. New simulations motivated by this experiment are used to inform the proposal of an upgraded experimental design. Our simulation predictions show that the new design is suited to experimentally demonstrating BSRS mitigation by an external magnetic field, despite the magnetization effects on the hydrodynamics, as well as the inherent temporal and spatial variations in plasma conditions.« less
  2. Nonlinear kinetic simulation study of the ion–ion streaming instability in single- and multi-ion species plasmas

    The nonlinear evolution of the ion–ion streaming instability (IISI) is studied using numerical techniques novel to this problem that afford direct insight into the evolution of the particle distributions of each species. During the linear phase of the instability, we demonstrate quantitative agreement with linear kinetic theory. Subsequently, the electrostatic field generated by the IISI causes ring-like velocity distributions of ions to form that are both heated and slowed to varying degrees relative to their initial flows. Due to variation in the trapping conditions for ion species of differing charge-to-mass ratio, when flows of multiple species interact, the nonlinear evolutionmore » of each species can be starkly different: we show a case where a lighter ion species is completely stopped by a heavier ion species via the IISI alone (i.e., without collisions) and, for the first time, demonstrate how the IISI can introduce a relative flow between ion species that initially have the same flow velocities, thereby separating them.« less
  3. Laser propagation in a subcritical foam: Subgrid model

    Here, we present a subgrid model for laser propagation in a subcritical foam. Our model describes the expansion of laser-irradiated foam elements that are below the resolution of the simulation grid and predicts the plasma conditions that result from burning down the foam. Our model can be included as a module within a larger multiphysics code, and we have implemented it within the code pF3D, which is used for simulating a laser-plasma interaction. The model predicts a reduced propagation velocity for a laser through a subcritical foam compared to simulating that foam as a homogeneous gas. This is attributed tomore » the laser energy that goes into burning down the foam microstructure. We compare our model against experimental data by simulating a 2 mg/cc SiO2 foam shot performed at the Janus laser facility at the Lawrence Livermore National Laboratory. pF3D simulations with the foam model predict hot ion temperatures. This leads to a reduction in the level of stimulated Brillouin scattering (SBS), bringing the simulated level of SBS into agreement with the data. Intensity fluctuations at the foam front due to laser speckles and refraction result in ion temperature fluctuations when the foam burns down. These drive long-lived electron density fluctuations on scales that are large compared to the pore size.« less
  4. Experimental and calculational investigation of laser-heated additive manufactured foams

    Foam materials are starting to find application in laser-heated Hohlraums used to drive inertial confinement fusion implosions. Foams made using additive manufacturing (AM) techniques are now available and may have advantages over traditional chemical (aerogel) foams. Here, we present new experimental data on laser-heated AM foams. Samples of four different types of printed AM foams were heated using a single 527 nm laser beam at the Jupiter Laser Facility. The laser pulse was ~180J square pulse with an FWHM of 1.6 ns and a peak intensity of 3–4 × 1014 W/cm2. The foam densities ranged from 12 to 93 mg/ccmore » (all supercritical for 527 nm light). We measured the backscattered light (power and spectrum), the transmitted light, side-on x-ray images, and the Ti K-shell emission that was used to infer the time-integrated temperature. The fraction of backscattered light was 6%–15% of the input laser energy. The pure carbon foam sample had less backscatter than a C8H9O3 foam of similar density, which was consistent with multi-fluid calculations that predicted less ion heating for the C8H9O3 foam. The level of backscatter and the thermal front speeds for the AM foams were similar to values measured for stochastic (aerogel) foams under similar conditions.« less
  5. Interactions of laser speckles due to kinetic stimulated Raman scattering

    We examine the possible interactions of two laser speckles due to the exchange of electrons and waves generated by stimulated Raman scattering (SRS) using two-dimensional particle-in-cell simulations. By controlling the relative polarization, spatial placement, and timing of two laser speckles, one above-threshold and one below-threshold for SRS, we isolate and characterize SRS growth stimulated in below-threshold speckles. SRS in the below-threshold speckle is shown to be triggered by energetic electrons, scattered light waves, and scattered plasma waves generated from the above-threshold speckle. As a result, we show that scattered light or electrons alone can be an intermediary trigger for SRS.
  6. Demonstrating the saturation of stimulated Brillouin scattering by ion acoustic decay using fully kinetic simulations

    The saturation of stimulated Brillouin scattering (SBS) by the decay to turbulence of the ion acoustic wave (IAW) that participates in the three-wave SBS interaction is demonstrated using a quasi-noiseless one-dimensional numerical solution to the Vlasov-Maxwell system of equations. This simulation technique permits careful examination of the decay process and its role in the complex evolution of SBS. Here, the IAW decay process is shown to be an effective SBS saturation mechanism. In our example, the instantaneous plasma reflectivity saturates at ~30% and drops to ~0% as a direct consequence of IAW decay. A contrasting example where the reflectivity ismore » controlled by dephasing due to the nonlinear frequency of the IAW is also discussed.« less
  7. Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas

    In ignition scale hot plasmas, temperature gradients and thermal transport modify electron distributions in a velocity range resonant with Langmuir waves typical of those produced by stimulated Raman scattering. We examine the resultant changes to the Landau damping experienced by these Langmuir waves and the levels of thermal plasma fluctuations. The form factor and Thomson scattering cross-section in such plasmas display unique characteristics of the background conditions. A theoretical model and high-order Vlasov-Fokker-Planck simulations are used in our analysis. As a result, an experiment to measure changes in thermal plasma fluctuation levels due to a thermal gradient is proposed.

Search for:
All Records
Author / Contributor
000000016576849X

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization