skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Resolution of 100 photons and quantum generation of unbiased random numbers

    Macroscopic quantum phenomena, such as observed in superfluids and superconductors, have led to promising technological advancements and some of the most important tests of fundamental physics. At present, quantum detection of light is mostly relegated to the microscale, where avalanche photodiodes are very sensitive to distinguishing single-photon events from vacuum but cannot differentiate between larger photon-number events. Beyond this, the ability to perform measurements to resolve photon numbers is highly desirable for a variety of quantum information applications including computation, sensing, and cryptography. True photon-number resolving detectors do exist, but they are currently limited to the ability to resolve onmore » the order of 10 photons, which is too small for certain proposals. In this work, we extend photon measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-efficient transition-edge sensors to accurately resolve photon numbers between zero and 100. Further, we then demonstrate the use of our system by implementing a quantum random number generator with no inherent bias. This method is based on sampling a coherent state in the photon-number basis and is robust against environmental noise, phase and amplitude fluctuations in the laser, loss and detector inefficiency as well as eavesdropping. Beyond true random number generation, our detection scheme serves as a means to implement quantum measurement and engineering techniques valuable for photonic quantum information processing.« less
  2. Proposal for a quantum random number generator using coherent light and a non-classical observable

    The prototype quantum random number (random bit) generator (QRNG) consists of one photon at a time falling on a 50:50 beam splitter followed by random detection in one or the other output beams due to the irreducible probabilistic nature of quantum mechanics. Due to the difficulties in producing single photons on demand, in practice, pulses of weak coherent (laser) light are used. In this paper, we take a different approach, one that uses moderate coherent light. It is shown that a QRNG can be implemented by performing photon-number parity measurements. For moderate coherent light, the probabilities of obtaining even ormore » odd parity in photon counts are 0.5 each. Photon counting with single-photon resolution can be performed through use of a cascade of beam splitters and single-photon detectors, as was done recently in a photon-number parity-based interferometry experiment involving coherent light. We highlight the point that unlike most quantum-based random number generators, our proposal does not require the use of classical de-biasing algorithms or post-processing of the generated bit sequence.« less
  3. Robust and compact entanglement generation from diode-laser-pumped four-wave mixing

    Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generatedmore » by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less

Search for:
All Records
Author / Contributor
0000000163745032

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization