skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Incorporation of GTR (generation–transport–recombination) in semiconductor simulations

    With the emergence of phase change memory, where the devices experience extreme thermal gradients (~100 K/nm) during transitions between low and high resistive states, the study of thermoelectric effects at small scales becomes particularly relevant. We had earlier observed asymmetric melting of self-heated nano-crystalline silicon micro-wires, where current densities of ~107 A/cm2 were forced through the wires by 1 μs, ~30 V pulses. The extreme asymmetry can be explained by the generation of considerable amount of minority carriers, transport under the electric field, and recombination downstream, a heat transfer process we termed as generation–transport–recombination, which is in opposite direction ofmore » the electronic-convective heat carried by the majority carriers. Here, we present a full semiconductor physics treatment of this carrier-lattice heat transport mechanism and the contribution of the minority carriers on the evolution of the melt–solid interface, which can be applied to various high-temperature electronic devices.« less
  2. Resistance drift in Ge2Sb2Te5 phase change memory line cells at low temperatures and its response to photoexcitation

    Resistance drift in amorphous Ge2Sb2Te5 is experimentally characterized in melt-quenched line cells in the range of 300 K to 125 K and is observed to follow the previously reported power-law behavior with drift coefficients in the range of 0.07 to 0.11 in the dark, linearly decreasing with 1/kT. While these drift coefficients measured in the dark are similar to commonly observed drift coefficients (~0.1) at and above room temperature, measurements under light show a significantly lower drift coefficient (0.05 under illumination vs 0.09 in the dark at 150 K). Periodic on/off switching of light shows a sudden decrease/increase in resistance,more » attributed to photo-excited carriers, followed by a very slow response (~30 min at 150 K) attributed to contribution of electron traps and slow trap-to-trap charge exchanges. A device-level electronic model is used to relate these experimental findings to gradual charging of electron traps in amorphous Ge2Sb2Te5, which gives rise to growth of a potential barrier for holes in time and, hence, resistance drift.« less
  3. Role of Oxygen on Chemical Segregation in Uncapped Ge2Sb2Te5 Thin Films on Silicon Nitride

    Germanium antimony telluride has been the most used and studied phase-change material for electronic memory due to its suitable crystallization temperature, amorphous to crystalline resistance contrast, and stability of the amorphous phase. In this paper, the segregation of Ge in a Ge2Sb2Te5 film of 30 nm thickness during heating inside the transmission electron microscope was observed and characterized. Furthermore, Ge2Sb2Te5 film was deposited using sputtering on a Protochips Fusion holder and left uncapped in atmosphere for about four months. Oxygen incorporated within the film played a significant role in the chemical segregation observed which resulted in amorphous Ge-O island boundariesmore » and Sb and Te rich crystalline domains. Such composition changes can occur when the phase-change material interfaces insulating oxide layers in an integrated device and can significantly impact its electrical and thermal properties.« less
  4. Crystallization and Thermoelectric Transport in Semiconductor Micro- and Nanostructures Under Extreme Conditions

    This project focused on thermoelectric transport in semiconductor micro and nanostructures where moderate and typical operating voltages and currents lead to extreme thermal gradients and current densities. Models that describe behavior of semiconducting materials typically assume an equilibrium condition or slight deviations from it. In these cases the generation-recombination processes are assumed to have reached a local equilibrium for a given temperature. Hence, free carrier concentrations and their mobilities, band-gap, thermal conductivity, thermoelectric properties, mobility of atoms and mechanical properties of the material, can be described as a function of temperature. In the case of PN junctions under electrical bias,more » carrier concentrations can change up to ~ 1020 cm-3 and a drift-diffusion approximation is typically used to obtain the carrier concentrations while assuming that the material properties do not change. In non-equilibrium conditions, the assumption that the material properties remain the same may not be valid. While the increased conduction-band electron concentration may not have a drastic effect on the material, large hole concentration is expected to soften the material as ‘a hole’ comes into existence as a broken bond in the lattice. As the hole density approaches 1022 cm-3, the number of bonds holding the lattice together is significantly reduced, making it easier to break additional bonds, reduce band-gap and inhibit phonon transport. As these holes move away from where they were generated, local properties are expected to deviate significantly from the equilibrium case. Hence, temperature alone is not sufficient to describe the behavior of the material. The behavior of the solid material close to a molten region (liquid-solid interfaces) is also expected to deviate from the equilibrium case as a function of hole injection rate, which can be drastically increased or decreased in the presence of an electric field. In the past years we have investigated the possible thermoelectric explanation of asymmetric melting of self-heated Si micro-structures using equilibrium materials’ properties that exist in the literature. We have analyzed the contribution of the electrons and the holes and identified the generation-transport-recombination of minority carriers (GTR) as the reason for an extreme change in the thermal profile in presence of strong generation and electric field. A more complete analysis required construction of models that capture the individual generation and recombination processes to understand the thermal profile as well as the possibility of electronic softening and non-equilibrium melting of the structure below melting temperature. The possibility of melting a material at a lower temperature breaks the correlation between the atomic mobility and the kinetic energy in the system for a given temperature and may allow alternative growth processes. This may also be the mechanism behind ‘amorphization-without-melting in layered structures heated with laser pulses’ that has been reported earlier. The conventional models for semiconductors are constructed for low temperature operation and their projections to higher temperatures do not yield reasonable carrier concentrations. Using these models, the free hole concentrations are calculated to be on the order of 1019 cm-3 at melting, which also do not correlate well with the latent heat of fusion. The melt is expected to correspond to broken bond concentrations on the order of the atomic density (~5x1022 cm-3 for Silicon). Hence, using conventional models the thermoelectric contribution expected from the GTR process is estimated to be much smaller than it likely is. Our work focused on improving the computational models and electrical characterization of materials and devices to better understand thermoelectric trabsport under extremen thermal gradients and current densities. Specifically, during this project, we have - Expanded our computational models to include self-consistent solution of Poisson charge equation (together with current and heat equations currently solved) for improved accuracy of role of bipolar conduction, - Developed a crystallization model incorporating experimentally determined nucleation rates and growth velocities to enable simulation of grain growth, growth-from-melt, filament formation and retention, - Performed high-temperature characterization of relevant materials (including metal contacts, interfacial and insulation layers); electrical and thermal conductivities, Seebeck coefficient, carrier mobility and concentration, - Performed High-speed device-level characterization of metastable amorphous and crystalline phases, crystallization and amorphization dynamics, melting and crystalline growth-from-melt, - Observed and characterized formation of microplasmas in electrically stressed ZnO nanoforests.« less
  5. Activation energy of metastable amorphous Ge2Sb2Te5 from room temperature to melt

    Resistivity of metastable amorphous Ge2Sb2Te5 (GST) measured at device level show an exponential decline with temperature matching with the steady-state thin-film resistivity measured at 858 K (melting temperature). This suggests that the free carrier activation mechanisms form a continuum in a large temperature scale (300 K – 858 K) and the metastable amorphous phase can be treated as a super-cooled liquid. The effective activation energy calculated using the resistivity versus temperature data follow a parabolic behavior, with a room temperature value of 333 meV, peaking to ~377 meV at ~465 K and reaching zero at ~930 K, using a referencemore » activation energy of 111 meV (3kBT/2) at melt. Amorphous GST is expected to behave as a p-type semiconductor at Tmelt ~ 858 K and transitions from the semiconducting-liquid phase to the metallic-liquid phase at ~930 K at equilibrium. The simultaneous Seebeck (S) and resistivity versus temperature measurements of amorphous-fcc mixed-phase GST thin-films show linear S-T trends that meet S = 0 at 0 K, consistent with degenerate semiconductors, and the dS/dT and room temperature activation energy show a linear correlation. The single-crystal fcc is calculated to have dS/dT = 0.153 μV/K2 for an activation energy of zero and a Fermi level 0.16 eV below the valance band edge.« less
  6. High temperature Hall measurement setup for thin film characterization

  7. High temperature electrical resistivity and Seebeck coefficient of Ge 2 Sb 2 Te 5 thin films

  8. Extracting the temperature distribution on a phase-change memory cell during crystallization


Search for:
All Records
Author / Contributor
0000000163565402

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization