skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. QBO deepens MJO convection

    Abstract The underlying mechanism that couples the Quasi-Biennial Oscillation (QBO) and the Madden-Julian oscillation (MJO) has remained elusive, challenging our understanding of both phenomena. A popular hypothesis about the QBO-MJO connection is that the vertical extent of MJO convection is strongly modulated by the QBO. However, this hypothesis has not been verified observationally. Here we show that the cloud-top pressure and brightness temperature of deep convection and anvil clouds are systematically lower in the easterly QBO (EQBO) winters than in the westerly QBO (WQBO) winters, indicating that the vertical growth of deep convective systems within MJO envelopes is facilitated bymore » the EQBO mean state. Moreover, the deeper clouds during EQBO winters are more effective at reducing longwave radiation escaping to space and thereby enhancing longwave cloud-radiative feedback within MJO envelopes. Our results provide robust observational evidence of the enhanced MJO activity during EQBO winters by mean state changes induced by the QBO.« less
  2. Detailing cloud property feedbacks with a regime-based decomposition

    Here, we report diagnosing the root causes of cloud feedback in climate models and reasons for inter-model disagreement is a necessary first step in understanding their wide variation in climate sensitivities. Here we bring together two analysis techniques that illuminate complementary aspects of cloud feedback. The first quantifies feedbacks from changes in cloud amount, altitude, and optical depth, while the second separates feedbacks due to cloud property changes within specific cloud regimes from those due to regime occurrence frequency changes. We find that in the global mean, shortwave cloud feedback averaged across ten models comes solely from a positive within-regimemore » cloud amount feedback countered slightly by a negative within-regime optical depth feedback. These within-regime feedbacks are highly uniform: In nearly all regimes, locations, and models, cloud amount decreases and cloud albedo increases with warming. In contrast, global-mean across-regime components vary widely across models but are very small on average. This component, however, is dominant in setting the geographic structure of the shortwave cloud feedback: Thicker, more extensive cloud types increase at the expense of thinner, less extensive cloud types in the extratropics, and vice versa at low latitudes. The prominent negative extratropical optical depth feedback has contributions from both within- and across-regime components, suggesting that thermodynamic processes affecting cloud properties as well as dynamical processes that favor thicker cloud regimes are important. The feedback breakdown presented herein may provide additional targets for observational constraints by isolating cloud property feedbacks within specific regimes without the obfuscating effects of changing dynamics that may differ across timescales.« less
  3. Understanding the Microphysical Control and Spatial‐Temporal Variability of Warm Rain Probability Using CloudSat and MODIS Observations

    Abstract By combining measurements from MODIS and the CloudSat radar, we develop a parameterization scheme to quantify the combined microphysical controls by liquid water path (LWP) and cloud droplet number concentration (CDNC) of the probability of precipitation (PoP) in marine low cloud over tropical oceans. We demonstrate that the spatial‐temporal variation of grid‐mean in‐cloud can be largely explained by the variation of the joint probability density function of LWP and CDNC in the phase space specified by the bivariate PoP (LWP and CDNC) function. Through a series of sensitivity tests guided by this understanding, we find that in the Southeasternmore » Pacific and Atlantic the stratocumulus to cumulus transition of the is mainly due to the variation of CDNC while the annual cycle is mainly due to the variation of LWP. The results of this study provide a viable way to diagnose the root cause of warm rain problems in global climate models.« less
  4. Role of updraft velocity in temporal variability of global cloud hydrometeor number

    Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Communitymore » Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Finally, coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.« less

Search for:
All Records
Author / Contributor
0000000160616905

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization