skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Development of compact tokamak fusion reactor use cases to inform future transport studies

    The OMFIT STEP (Meneghini et al. , Nucl. Fusion , vol. 10, 2020, p. 1088) workflow has been used to develop inductive and steady-state H-mode core plasma scenario use cases for a $$B_0 = 8 \, {\rm T}$$ , $$R_0 = 4 \, {\rm m}$$ machine to help guide and inform future higher-fidelity studies of core transport and confinement in compact tokamak reactors. Both use cases are designed to produce 200 MW or more of net electric power in an up-down symmetric plasma with minor radius $$a = 1.4 \, {\rm m}$$ , elongation $$\kappa = 2.0$$ , triangularity $$\delta =more » 0.5$$ and effective charge $$Z_{{\rm eff}} \simeq 2$$ . Additional considerations based on the need for compatibility of the core with reactor-relevant power exhaust solutions and external actuators were used to guide and constrain the use case development. An extensive characterization of core transport in both scenarios is presented, the most important feature of which is the extreme sensitivity of the results to the quantitative stiffness level of the transport model used as well as the predicted critical gradients. This sensitivity is shown to arise from different levels of transport stiffness exhibited by the models, combined with the gyroBohm-normalized fluxes of the predictions being an order of magnitude larger than other H-mode plasmas. Additionally, it is shown that although heating in both plasmas is predominantly to the electrons and collisionality is low, the plasmas remain sufficiently well coupled for the ions to carry a significant fraction of the thermal transport. As neoclassical transport is negligible in these conditions, this situation inherently requires long-wavelength ion gyroradius-scale turbulence to be the dominant transport mechanism in both plasmas. These results are combined with other basic considerations to propose a simple heuristic model of transport in reactor-relevant plasmas, along with simple metrics to quantify coupling and core transport properties across burning and non-burning plasmas.« less
  2. On the origin of the DIII-D L-H power threshold isotope effect

    The increased low to high confinement mode (L to H-mode) power threshold $$P_\mathrm{LH}$$ in DIII-D low collisionality hydrogen plasmas (compared to deuterium) is shown to result from lower impurity (carbon) content, consistent with reduced (mass-dependent) physical and chemical sputtering of graphite. Trapped gyro-Landau fluid (TGLF) quasilinear calculations and local non-linear gyrokinetic CGYRO simulations confirm stabilization of ion temperature gradient (ITG) driven turbulence by increased carbon ion dilution as the most important isotope effect. In the plasma edge, electron non-adiabaticity is also predicted to contribute to the isotope dependence of thermal transport and $$P_\mathrm{LH}$$, however its effect is subdominant compared tomore » changes from impurity isotopic behavior. This L-H power threshold reduction with increasing carbon content at low collisionality is in stark contrast to high collisionality results, where additional impurity content appears to increase the power necessary for H-mode access.« less
  3. Direct measurement of the electron turbulence-broadening edge transport barrier to facilitate core–edge integration in tokamak fusion plasmas

    Abstract The integration of a high-performance core and a dissipative divertor, or the so-called ‘core–edge integration,’ has been widely identified as a critical gap in the design of future fusion reactors. In this letter, we report, for the first time, direct experimental evidence of electron turbulence at the DIII-D H-mode pedestal that correlates with the broadening of the pedestal and thus facilitates core–edge integration. In agreement with gyrokinetic simulations, this electron turbulence is enhanced by high η e (η e = Ln /LT e, where Ln is the density scale length and LT e is the electron temperature scale length),more » which is due to a strong shift between the density and temperature pedestal profiles associated with a closed divertor. The modeled turbulence drives significant heat transport with a lower pressure gradient that may broaden the pedestal to a greater degree than the empirical and theoretically predicted pedestal width scalings. Such a wide pedestal, coupled with a closed divertor, enables us to achieve a good core–edge scenario that integrates a high-temperature low-collisionality pedestal (pedestal top temperature T e,ped > 0.8 keV and a pedestal top collisionality ν*ped < 1) under detached divertor conditions. This paves a new path toward solving the core–edge integration issue in future fusion reactors.« less
  4. Prompt core confinement improvement across the L–H transition in DIII-D: Profile stiffness, turbulence dynamics, and isotope effect

    We elaborate on the nature of the prompt core confinement improvement observed at the L–H transition in DIII-D, which is a long-standing issue unsolved for more than two decades and can impact future fusion reactor performance. Dynamic transport analysis suggests the essential role of the profile stiffness for understanding the mechanism of the prompt core confinement improvement. Beam emission spectroscopy shows that transport reduction at the core cannot be explained only by the ion scale turbulence density fluctuation suppression. Properties of nonlocal confinement improvement across the L–H transition are experimentally assessed in hydrogen (H) and deuterium (D) plasmas. Prompt coremore » confinement improvement is found to be more rapid in the lighter hydrogen isotope.« less
  5. The physics basis to integrate an MHD stable, high-power hybrid scenario to a cool divertor for steady-state reactor operation

    Abstract Coupling a high-performance core to a low heat flux divertor is a crucial step for ITER and a Fusion Pilot Plant or DEMO. Experiments in DIII-D recently expanded the steady-state hybrid scenario to high density and divertor impurity injection to study the feasibility of a radiating mantle solution. This work presents the physics basis for trade-offs between density, current drive and stability to tearing modes (TMs) at high β. EC power is crucial to tailor the plasma profiles into a passively stable state, and to eject impurities from the core. Off-axis EC depositions decrease the heating efficiency, but calculatedmore » electron heat transport coefficients show that this effect is partially mitigated by improved confinement inside the EC deposition. Additionally, the reduction in pressure is recovered by increasing the density. This favourable scaling of confinement with density was observed in high power plasmas for years, and this work provides a comprehensive explanation. ELITE predictions indicate that a path in peeling-ballooning stability opens up for certain conditions of density, power, q 95 and shaping, allowing the edge pressure to continue increasing without encountering a limit. In the core, calculated anomalous fast-ion diffusion coefficients are consistent with density fluctuation measurements in the toroidicity-induced Alfvén eigenmode range, showing that smaller fast-ion losses contribute to the enhanced confinement at high density. The edge integration study shows that divertor heat loads can be reduced with Ne and Ar injection, but this eventually triggers a cascade of n = 1, 2, 3 core TMs. We can now show that impurity radiation in the core is small and it is not the cause for the drop in confinement at high Ar and Ne injection rates. The overlap between the core TMs is consistent with the loss of pressure as estimated by the Belt model for the coupled rational surfaces. Optimization of these trade-offs has achieved plasmas with sustained H 98y2 = 1.7, f GW = 0.7 and ∼85% mantle radiation. The scenario and its variations at higher density and on- vs off-axis EC heating has been studied as a candidate for an integrated solution for several reactor designs, such as ITER, ARC, and the ARIES-ACT1 case, showing promising results in terms of fusion power and gain.« less
  6. Study on divertor detachment and pedestal characteristics in the DIII-D upper closed divertor

    Abstract Experiments performed in DIII-D demonstrate that higher plasma current and heating power combined with impurity seeding facilitate the achievement of divertor detachment with a higher pedestal pressure and higher plasma performance in H-mode plasmas with a baffled closed divertor compared with an open divertor. Dedicated experiments were carried out to study the impact of power, plasma current and impurity seeding on divertor detachment with ion B × B directed into the divertor favorable for the L–H transition. With a factor of three variation in heating power andmore » with only D2 puffing, no significant difference in the separatrix density at detachment onset was found. The higher heating power leads to higher impurity concentration and wider scrape-off layer (SOL) width, and reduces the detachment onset density to one similar to that in lower-power plasmas. Higher current requires higher pedestal and line-averaged densities to achieve divertor detachment; however, the increase in separatrix density at increasing plasma current is found to be less pronounced. Initial calculations found that both power scan and plasma current scan datasets are qualitatively consistent with theory after considering the change in impurity concentration and heat flux width. This also motivates the future extensive study of transport and divertor impurity behavior in order to have a quantitative comparison between experiment and theory. Compared with an open divertor, a closed divertor facilitates detachment onset at ∼40% lower line-averaged plasma density. Additional N2 seeding facilitates the achievement of detachment at a lower separatrix density and thus a higher pedestal temperature, which is beneficial for advanced tokamak scenarios. Higher heating power requires a higher N2 puffing rate to achieve the same degree of detachment, while a higher N2 puffing rate leads to lower detachment onset line-averaged density, both of which agree with theory. In contrast to the narrower pedestal in an open divertor approaching detachment, the pedestal density width in a closed divertor increases with density. The density gradient increases with line-averaged density at higher plasma current, but remains nearly unchanged at lower plasma current. In particular, compared with discharges with low power, at high heating power the pedestal density gradient is much weaker, while the SOL density is significantly higher and wider. At the same plasma current, both pedestal pressure gradient and temperature gradient decrease linearly with the line-averaged density but remain similar across different heating powers. Even with different plasma current and heating power, the normalized pressure gradient remains identical. As a result, achievement of divertor detachment with a higher pedestal pressure and higher plasma performance is shown in a closed divertor, which is important for improving core–edge integration as one of the critical issues for future tokamak fusion reactors.« less
  7. Transition from ITG to MTM linear instabilities near pedestals of high density plasmas

    Investigation of linear gyrokinetic ion-scale modes ([Formula: see text]) finds that a transition from ion temperature gradient to microtearing mode (MTM) dominance occurs as the density is increased near the pedestal region of a parameterized DIII-D sized tokamak. H-modes profile densities, temperatures, and equilibria are parameterized utilizing the OMFIT PRO_create module. With these profiles, linear gyrokinetic ion-scale instabilities are predicted with CGYRO. This transition ( nMTM) has a weak dependence on radial location in the region near the top of the pedestal ([Formula: see text]), which allows simulating single radii to examine the approximate scaling of nMTM with global parameters.more » The critical nMTM is found to scale with plasma current. Additionally, increasing the minor radius by decreasing the aspect ratio and increasing the major radius are found to reduce nMTM. However, any relationship between nMTM and density limit physics remains unclear as nMTM increases relative to the Greenwald density with larger minor radius and with larger magnetic field, suggesting that the transport due to MTM may be less important for a reactor. Additionally, nMTM is sensitive to the pedestal temperature, the local electron and ion gradients, the ratio of ion to electron temperature [Formula: see text], and the current profile. MTMs are predicted to be the dominant instability in the core at similar Greenwald fractions for DIII-D, NSTX, and NSTX-U H-mode experiments, supporting the results of the parameterized study. Additionally, MTMs continue to be the dominant linear instability in a DIII-D L-mode after an H–L transition as the plasma approaches a density limit disruption despite the large change in plasma profiles.« less
  8. Details of the neutral energy distribution and ionization source using spectrally resolved Balmer-alpha measurements on DIII-D

    Spectrally resolved passive Balmer- α (D- α, H- α) measurements from the DIII-D 16 channel edge main-ion charge exchange recombination system confirm the presence of higher energy neutrals (“thermal” neutrals) in addition to the cold neutrals that recycle off the walls in the edge region of DIII-D plasmas. Charge exchange between thermal ions and edge neutrals transfers energy and momentum between the populations giving rise to thermal neutrals with energies approximating the ions in the pedestal region. Multiple charge exchange events in succession allow an electron to effectively take a random walk, transferring from ion to ion, providing a pathwaymore » of increasing energy and velocity, permitting a neutral to get deeper into the plasma before a final ionization event that contributes to the ion and electron particle fueling. Spectrally resolved measurements provide information about the density and velocity distribution of these neutrals, which has been historically valuable for validating Monte Carlo neutral models, which include the multi stage charge exchange dynamics. Here, in this study, a multi-channel set of such measurements is used to specifically isolate the details of the thermal neutrals that are responsible for fueling inside the pedestal top. Being able to separate the thermal from the cold emission overcomes several challenges associated with optical filter-based neutral density measurements. The neutral dynamics, deeper fueling by the thermal neutrals, and spectral measurement are modeled with the FIDASIM Monte Carlo collisional radiative code, which also produces synthetic spectra with a shape that is in close agreement with the measurements. By scaling the number of neutrals in the simulation to match the intensity of the thermal emission, we show it is possible to obtain local neutral densities and ionization source rates.« less
  9. Reducing the L-H transition power threshold in ITER-similar-shape DIII-D hydrogen plasmas

    Recent dedicated DIII-D experiments in low-torque, ITER-similar-shape (ISS) hydrogen plasmas (at a plasma current Ip ~ 1.5 MA and ITER-similar edge safety factor q95 ~ 3.6) show that the L-H transition power threshold PLH can be reduced substantially (~30%) with L-mode helium admixtures nHe/ne $$\leqslant$$ 25%. In the ensuing H-mode, helium ion fractions nHe/nH remain below 25%. H-mode normalized pressure and confinement quality are only slightly affected by helium seeding, and Zeff $$\leqslant$$ 2.15 (including helium and carbon content). The plasmas investigated here are electron-heat dominated, with temperatures Te(0)/Ti(0) $$\geqslant$$ 1 and edge heat flux ratio Qe/Qi(ρ = 0.95) ~more » 1.2–1.5. Without mitigation, PLH is higher by a factor of 2–3 in comparison to similar ISS deuterium plasmas. ISS hydrogen plasmas with lower plasma current Ip ~ 1 MA (increased edge safety factor q95 ~ 5.1) exhibit a substantially lower power threshold. This plasma current dependence, also observed previously on ASDEX-U and in JET, is not accounted for by the commonly used 2008 ITPA multi-machine threshold scaling, but could potentially allow H-mode access at marginal heating power during the initial plasma current ramp-up. Attempts to reduce PLH with low-field- and high-field-side hydrogen pellet injection, using 1.7 mm diameter pellets, have not demonstrated a robust threshold reduction, in contrast to successful earlier experiments with larger 2.7 mm pellets. Finally, techniques for reducing PLH are very important for ITER, in particular for accessing H-mode in hydrogen plasmas during the Pre-Fusion Power Operation-1 (PFPO-1) campaign with marginal auxiliary heating power (20–30 MW of ECH).« less
  10. Mitigation of plasma–wall interactions with low-Z powders in DIII-D high confinement plasmas

    Experiments with low-Z powder injection in DIII-D high confinement discharges demonstrated increased divertor dissipation and detachment while maintaining good core energy confinement. Lithium (Li), boron (B), and boron nitride (BN) powders were injected in H-mode plasmas (Ip = 1 MA, Bt = 2 T, PNB = 6 MW, < ne > = 3.6–5.0 · 1019 m–3) into the upper small-angle slot divertor for 2 s intervals at constant rates of 3–204 mg s–1. The multi-species BN powders at a rate of 54 mg s–1 showed the most substantial increase in divertor neutral compression by more than an order of magnitudemore » and lasting detachment with minor degradation of the stored magnetic energy Wmhd by 5%. Rates of 204 mg s–1 of boron nitride powder further reduce edge localized mode-fluxes on the divertor but also cause a drop in confinement performance by 24% due to the onset of an n = 2 tearing mode. The application of powders also showed a substantial improvement of wall conditions manifesting in reduced wall fueling source and intrinsic carbon and oxygen content in response to the cumulative injection of non-recycling materials. Furthermore, the results suggest that low-Z powder injection, including mixed element compounds, is a promising new core-edge compatible technique that simultaneously enables divertor detachment and improves wall conditions during high confinement operation.« less
...

Search for:
All Records
Author / Contributor
0000000159186506

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization