skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Two-dimensional Thomson scattering measurements of misaligned electron density and temperature gradients and associated Biermann battery produced fields

    We present optical Thomson scattering measurements of electron density and temperature in high Mach number laser-driven blast waves in homogeneous gases. Taylor–Sedov blast waves are launched in nitrogen (N2) or helium (He) at pressures between 0.4 mTorr and 10 Torr by ablating a solid plastic target with a high energy laser pulse (10 J, 1012W/cm2). Experiments are performed at high repetition rate (1 Hz), which allows one-dimensional and two-dimensional Thomson scattering measurements over an area of several cm2 by automatically translating the scattering volume between shots. Electron temperature and density in the blast wave fronts were seen to increase withmore » increasing background gas pressure. Measured electron density and temperature gradients were used to calculate $$\partial$$B/$$\partial$$t ∝ ∇Te $$\times$$ ∇ne. The experimentally measured $$\partial$$B/$$\partial$$t showed agreement with the magnetic field probe (B-dot) measurements, revealing that magnetic fields are generated in the observed blast waves via the Biermann battery effect. The results are compared to numerical three-dimensional collisional magnetohydrodynamic simulations performed with FLASH, and are discussed in the context of spontaneous magnetic field generation via the Biermann battery effect.« less
  2. Two-Dimensional Thomson Scattering in Laser-Produced Plasmas

    We present two-dimensional (2D) optical Thomson scattering measurements of electron density and temperature in laser-produced plasmas. The novel instrument directly measures ne(x,y) and Te(x,y) in two dimensions over large spatial regions (cm2) with sub-mm spatial resolution, by automatically translating the scattering volume while the plasma is produced repeatedly by irradiating a solid target with a high-repetition-rate laser beam (10 J, ∼1012 W/cm2, 1 Hz). In this paper, we describe the design and motorized auto-alignment of the instrument and the computerized algorithm that autonomously fits the spectral distribution function to the tens-of-thousands of measured scattering spectra, and captures the transition frommore » the collective to the non-collective regime with distance from the target. As an example, we present the first 2D scattering measurements in laser-driven shock waves in ambient nitrogen gas at a pressure of 0.13 mbar.« less
  3. Planar laser induced fluorescence mapping of a carbon laser produced plasma

    We present measurements of ion velocity distribution profiles obtained by laser induced fluorescence (LIF) on an explosive laser produced plasma. The spatiotemporal evolution of the resulting carbon ion velocity distribution was mapped by scanning through the Doppler-shifted absorption wavelengths using a tunable, diode-pumped laser. The acquisition of these data was facilitated by the high repetition rate capability of the ablation laser (1 Hz), which allowed for the accumulation of thousands of laser shots in short experimental times. By varying the intensity of the LIF beam, we were able to explore the effects of fluorescence power against the laser irradiance in themore » context of evaluating the saturation vs the non-saturation regime. The small size of the LIF beam led to high spatial resolution of the measurement compared to other ion velocity distribution measurement techniques, while the fast-gate operation mode of the camera detector enabled the measurement of the relevant electron transitions.« less
  4. First Results from the Thomson Scattering Diagnostic on the Large Plasma Device

    We present the first Thomson scattering measurements of electron density and temperature in the Large Plasma Device (LAPD), a 22 m long magnetized linear plasma device at the University of California Los Angeles (UCLA). The diagnostic spectrally resolves the Doppler shift imparted on light from a frequency-doubled Nd:YAG laser when scattered by plasma electrons. A fiber array coupled to a triple-grating spectrometer is used to obtain high stray light rejection and discriminate the faint scattering signal from a much larger background. In the center of the plasma column, the measured electron density and temperature are about ne≈1.5×1013 cm−3 and Te≈more » 3 eV, respectively, depending on the discharge parameters and in good agreement with Langmuir probe data. Optical design considerations to maximize photon count while minimizing alignment sensitivity are discussed in detail and compared to numerical calculations. Raman scattering off of a quartz crystal probe is used for an absolute irradiance calibration of the system.« less
  5. Thomson scattering on the large plasma device

    We have developed a non-collective Thomson scattering diagnostic for measurements of electron density and temperature on the Large Plasma Device. A triple grating spectrometer with a tunable notch filter is used to discriminate the faint scattering signal from the stray light. In this paper, we describe the diagnostic and its calibration via Raman scattering and present the first measurements performed with the fully commissioned system. Depending on the discharge conditions, the measured densities and temperatures range from 4.0 × 1012 to 2.8 × 1013 cm-3 and from 1.2 to 6.8 eV, respectively. The variation of the measurement error with plasma parametersmore » and discharges averaged is also discussed.« less
  6. High repetition rate mapping of the interaction between a laser plasma and magnetized background plasma via laser induced fluorescence

    In this work, the laminar coupling of energy between a laser-produced plasma and a background magnetized plasma was investigated via planar laser induced fluorescence diagnostic and magnetic flux probes. Experiments performed on the Large Plasma Device at the University of California, Los Angeles, mapped out the two-dimensional spatiotemporal evolution of the laser-plasma (debris) ion velocity distribution function (VDF) to assess debris-background coupling in a sub-Alfvénic regime. The acquisition of these data necessitates high repetition rate (1 Hz) as each dataset is the accumulation of thousands of laser shots, which would not be feasible in single-shot experiments. Fully kinetic, three-dimensional particle-in-cellmore » simulations are compared to the measured VDFs to provide a framework in which we can understand the coupling of a sub-Alfvénic plasma flow through a preformed, magnetized plasma. The simulations display the same departure from the expected gyromotion of the debris plasma as observed in the experimental data, and in conjunction with the measured magnetic field traces, have led to the direct observation of the collisionless coupling via laminar fields.« less
  7. Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results

    We report magnetospheres are a ubiquitous feature of magnetized bodies embedded in a plasma flow. While large planetary magnetospheres have been studied for decades by spacecraft, ion-scale “mini” magnetospheres can provide a unique environment to study kinetic-scale, collisionless plasma physics in the laboratory to help validate models of larger systems. In this work, we present preliminary experiments of ion-scale magnetospheres performed on a unique high-repetition-rate platform developed for the Large Plasma Device at the University of California, Los Angeles. The experiments utilize a high-repetition-rate laser to drive a fast plasma flow into a pulsed dipole magnetic field embedded in amore » uniform magnetized background plasma. 2D maps of the magnetic field with high spatial and temporal resolution are measured with magnetic flux probes to examine the evolution of magnetosphere and current density structures for a range of dipole and upstream parameters. The results are further compared to 2D particle-in-cell simulations to identify key observational signatures of the kinetic-scale structures and dynamics of the laser-driven plasma. We find that distinct 2D kinetic-scale magnetopause and diamagnetic current structures are formed at higher dipole moments, and their locations are consistent with predictions based on pressure balances and energy conservation.« less
  8. Raster Thomson scattering in large-scale laser plasmas produced at high repetition rate

    We present optical Thomson scattering measurements of electron density and temperature in a large-scale (~2 cm) exploding laser plasma produced by irradiating a solid target with a high energy (5-10 J) laser pulse at high repetition rate (1 Hz). The Thomson scattering diagnostic matches this high repetition rate. Unlike previous work performed in single shots at much higher energies, the instrument allows point measurements anywhere inside the plasma by automatically translating the scattering volume using motorized stages as the experiment is repeated at 1 Hz. Measured densities around 4×1016 cm-3 and temperatures around 7 eV result in a scattering parametermore » near unity, depending on the distance from the target. The measured spectra show the transition from collective scattering close to the target to non-collective scattering at larger distances. Densities obtained by fitting the weakly collective spectra agree to within 10% with an irradiance calibration performed via Raman scattering in nitrogen.« less
  9. Measurements of ion velocity distributions in a large scale laser-produced plasma

    Laser-produced plasma velocity distributions are an important, but difficult quantity to measure. In this work, we present a noninvasive technique for measuring individual charge state velocity distributions of laser-produced plasmas using a high temporal and spectral resolution monochromator. The novel application of this technique is its ability to detect particles up to seven meters from their inception (significantly larger than most laboratory plasma astrophysics experiments, which take place at or below the millimeter scale). The design and assembly of this diagnostic is discussed in terms of maximizing the signal to noise ratio, maximizing the spatial and temporal resolution, and othermore » potential use cases. The analysis and results of this diagnostic are demonstrated by directly measuring the time-of-flight velocity of all ion charge states in a laser produced carbon plasma.« less
  10. Laser-produced plasmas as drivers of laboratory collisionless quasi-parallel shocks

    The creation of a repeatable collisionless quasi-parallel shock in the laboratory would provide a valuable platform for experimental studies of space and astrophysical shocks. However, conducting such an experiment presents substantial challenges. Scaling the results of hybrid simulations of quasi-parallel shock formation to the laboratory highlights the experimentally demanding combination of dense, fast, and magnetized background and driver plasmas required. One possible driver for such experiments is high-energy laser-produced plasmas (LPPs). Preliminary experiments at the University of California, Los Angeles, have explored LPPs as drivers of quasi-parallel shocks by combining the Phoenix Laser Laboratory [Niemann et al., J. Instrum. 7,more » P03010 (2012)] with a large plasma device [Gekelman et al., Rev. Sci. Instrum. 87, 025105 (2016)]. Beam instabilities and waves characteristic of the early stages of shock formation are observed, but spatial dispersion of the laser-produced plasma prematurely terminates the process. This result is illustrated by experimental measurements and Monte Carlo calculations of LPP density dispersion. The experimentally validated Monte Carlo model is then applied to evaluate several possible approaches to mitigating LPP dispersion in future experiments.« less
...

Search for:
All Records
Author / Contributor
0000000154899144

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization