skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anthropogenic Aerosol Radiative Forcing in Asia Derived From Regional Models With Atmospheric and Aerosol Data Assimilation

Journal Article · · Atmospheric Chemistry and Physics
 [1];  [2];  [3];  [3];  [3];  [3];  [4];  [4]
  1. Gwangju Inst. of Science and Technology (Korea, Republic of)
  2. Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography
  3. Univ. of Iowa, Iowa City, IA (United States)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

A high-resolution estimate of monthly 3D aerosol solar heating rates and surface solar fluxes in Asia from 2001 to 2004 is described here. This product stems from an Asian aerosol assimilation project, in which a) the PNNL regional model bounded by the NCEP reanalyses was used to provide meteorology, b) MODIS and AERONET data were integrated for aerosol observations, c) the Iowa aerosol/chemistry model STEM-2K1 used the PNNL meteorology and assimilated aerosol observations, and d) 3D (X-Y-Z) aerosol simulations from the STEM-2K1 were used in the Scripps Monte-Carlo Aerosol Cloud Radiation (MACR) model to produce total and anthropogenic aerosol direct solar forcing for average cloudy skies. The MACR model and STEM both used the PNNL model resolution of 0.45º×0.4º in the horizontal and of 23 layers in the troposphere. The 2001–2004 averaged anthropogenic all-sky aerosol forcing is -1.3 Wm-2 (TOA), +7.3 Wm-2 (atmosphere) and -8.6 Wm-2 (surface) averaged in Asia (60-138°E & Eq. -45°N). In the absence of AERONET SSA assimilation, absorbing aerosol concentration (especially BC aerosol) is much smaller, giving -2.3 Wm-2 (TOA), +4.5 Wm-2 (atmosphere) and -6.8 Wm-2 (surface), averaged in Asia. In the vertical, monthly forcing is mainly concentrated below 600hPa with maxima around 800hPa. Seasonally, low-level forcing is far larger in dry season than in wet season in South Asia, whereas the wet season forcing exceeds the dry season forcing in East Asia. The anthropogenic forcing in the present study is similar to that in Chung et al.’s [2005] in overall magnitude but the former offers fine-scale features and simulated vertical profiles. The interannual variability of the computed anthropogenic forcing is significant and extremely large over major emission outflow areas. In view of this, the present study’s estimate is within the implicated range of the 1999 INDOEX result. However, NCAR/CCSM3’s anthropogenic aerosol forcing is much smaller than the present study’s estimate at the surface, and is outside of what the INDOEX findings can support.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
991569
Report Number(s):
PNNL-SA-69757; KP1703010; TRN: US201021%%208
Journal Information:
Atmospheric Chemistry and Physics, Vol. 10, Issue 13; ISSN 1680-7316
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English