skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intraparticle mass transfer kinetics on molecularly imprinted polymers of structural analogues of a template

Journal Article · · Chemical Engineering Science
OSTI ID:989609
 [1];  [2];  [3]
  1. University of Tennessee, Knoxville (UTK)
  2. University of Tennessee and Rzeszow University of Technology, Poland
  3. ORNL

The intraparticle mass transfer kinetics of the structural analogues of a template on a Fmoc-L-Tryptophan (Fmoc-L-Trp) imprinted polymer (MIP) and on the corresponding non-imprinted polymer (NIP) were quantitatively studied using the lumped pore diffusion model (POR) of chromatography. The best equilibrium isotherm models of these compounds were used to calculate the high-concentration band profiles of different substrates on the MIP and the NIP with the POR model. These profiles were compared to experimental band profiles. The numerical values of the intraparticle pore and surface diffusion coefficients were adjusted to determine those that minimized the differences between calculated and experimental profiles. The results of this exercise show that surface diffusion is the dominant intraparticle mass transfer process for the substrates on the polymers and that the energetic heterogeneity of the surface should be considered in accounting for the surface diffusion of the L-enantiomers on the MIP. The surface diffusion coefficient increases with decreasing overall affinity of each substrate for the polymers.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
989609
Journal Information:
Chemical Engineering Science, Vol. 61, Issue 2006; ISSN 0009-2509
Country of Publication:
United States
Language:
English