skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermodynamics of Magnetic Systems from First Principles: WL-LSMS

Conference ·
OSTI ID:986473

Density Functional calculations have proven to be a powerful tool to study the ground state of many materials. For finite temperatures the situation is less ideal and one is often forced to rely on models with parameters either fitted to zero temperature first principles calculations or experimental results. This approach is especially unsatisfacory in inhomogeneous systems, nano particles, or other systems where the model parameters could vary significantly from one site to another. Here we describe a possible solution to this problem by combining classical Monte Carlo calculations the Wang-Landau method in this case with a firs principles electronic structure calculation, specifically our locally selfconsistent multiple scallering code (LSMS). The combined code shows superb scaling behavior on massively parallel computers. The code sustained 1.836 Petaflop/s on 223232 cores of the Cray XT5 jaguar system at Oak Ridge.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences (NCCS)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
986473
Resource Relation:
Conference: CUG 2010 conference, Edinburgh, United Kingdom, 20100524, 20100527
Country of Publication:
United States
Language:
English