skip to main content

SciTech Connect

Title: Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

General introduction to OLED basics and OLED-based structurally integrated sensors was provided in chapter 1 and chapter 2. As discussed in chapter 3, OLEDs were developed or improved using novel engineering methods for better charge injection (increased by over 1 order of magnitude) and efficiency. As the excitation sources, these OLEDs have preferred characteristics for sensor applications, including narrowed emission, emission at desired wavelength, and enhanced output for reduced EL background, higher absorption and improved device lifetime. In addition to OLEDs with desired performance, sensor integration requires oxidase immobilization with the sensor film for O{sub 2}-based biological and chemical sensing. Nanoparticles such as ZnO have large surface area and high isoelectric point ({approx}9.5), which favors enzyme immobilization via physical adsorption as well as Coulombic bonding. In chapter 4, it was demonstrated that ZnO could be used for this purpose, although future work is needed to further bond the ZnO to the sensor film. In chapter 5, single unit sensor was extended to multianalyte parallel sensing based on an OLED platform, which is compact and integrated with silicon photodiodes and electronics. Lactate and glucose were simultaneously monitored with a low limit of detection 0.02 mM, fast response time ({approx} 1 minute) more » and dynamic range from 0-8.6 ppm of dissolved oxygen. As discovered in previous work, the dynamic range covers 0-100% gas phase O{sub 2} or 0-40 ppm dissolved oxygen at room temperature. PL decay curve, which is used to extract the decay time, is usually not a simple exponential at high O{sub 2} concentration, which indicates that O{sub 2} is not equally accessible for different luminescent sites. This creates a challenge for data analysis, which however was successfully processed by stretched exponential as shown in chapter 6. This also provides an insight about the distribution of O{sub 2}:dye collisional quenching rate due to microheterogeneity. Effect of TiO{sub 2} doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 {mu}s). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future. « less
Authors:
Publication Date:
OSTI Identifier:
985317
Report Number(s):
IS-T 3009
TRN: US1006201
DOE Contract Number:
DE-AC02-07CH11358
Resource Type:
Thesis/Dissertation
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE; USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CALIBRATION; CHARGE TRANSPORT; DATA ANALYSIS; DECAY; DISSOLVED GASES; GLUCOSE; LIGHT EMITTING DIODES; OXIDASES; OXYGEN; PHOTODETECTORS; PHOTODIODES; POLYMERS; QUENCHING; RAMAN SPECTRA; SILICON; SUBSTRATES; SURFACE AREA; THICKNESS; TIME MEASUREMENT