skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment

Journal Article · · Environmental Science & Technology
DOI:https://doi.org/10.1021/es901891t· OSTI ID:985273

The interaction of mercury (Hg) with dissolved natural organic matter (NOM) under equilibrium conditions is the focus of many studies but the kinetic controls on Hg-NOM complexation in aquatic systems has often been overlooked. We examined the rate of Hg-NOM complexation using reactive Hg (HgR) measurements and C18 solid phase extraction in Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, Tennessee, and in controlled laboratory experiments using a reference NOM isolate. Greater than 90% of the dissolved Hg at the headwaters of UEFPC was present as HgR and this fraction decreased downstream but remained >25% of the dissolved Hg at all sites. Equilibrium calculations indicate that Hg-NOM complexes should dominate throughout UEFPC, but the presence of HgR suggests that equilibrium conditions are not established. Rate constants for Hg-NOM complexation varied between 0.05 and 0.29 hr-1 in laboratory experiments. This study demonstrates the need to consider Hg-NOM complexation kinetics on processes such as Hg methylation and solid phase partitioning.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
985273
Journal Information:
Environmental Science & Technology, Vol. 43, Issue 22; ISSN 0013-936X
Country of Publication:
United States
Language:
English