skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Design and Implementation of the Swim Integrated Plasma Simulator

Conference ·
OSTI ID:982168

As computing capabilities have increased, the coupling of computational models has become an increasingly viable and therefore important way of improving the physical fidelity of simulations. Applications currently using some form of multicode or multi-component coupling include climate modeling, rocket simulations, and chemistry. In recent years, the plasma physics community has also begun to pursue integrated multiphysics simulations for space weather and fusion energy applications. Such model coupling generally exposes new issues in the physical, mathematical, and computational aspects of the problem. This paper focuses on the computational aspects of one such effort, detailing the design, and implementation of the Integrated Plasma Simulator (IPS) for the Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM). The IPS framework focuses on maximizing flexibility for the creators of loosely-coupled component-based simulations, and provides services for execution coordination, resource management, data management, and inter-component communication. It also serves as a proving ground for a concurrent 'multi-tasking' execution model to improve resource utilization, and application-level fault tolerance. We also briefly describe how the IPS has been applied to several problems of interest to the fusion community.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
982168
Resource Relation:
Conference: The 18th Euromirco International Conference on Parallel, Distributed and Network-Based Computing, Pisa, Italy, 20100217, 20100217
Country of Publication:
United States
Language:
English