skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plasmonic All-Optical Tunable Wavelength Shifter

Journal Article · · Nature Photonics

At present, wavelength-division-multiplexed fibre lines routinely operate at 10 Gbit s{sup -1} per channel. The transition from static-path networks to true all-optical networks encompassing many nodes, in which channels are added/dropped and efficiently reassigned, will require improved tools for all-optical wavelength shifting. Specifically, one must be able to shift the carrier wavelength (frequency) of an optical data signal over tens of nanometres (a THz range) without the bottleneck of electrical conversion. Popular approaches to this problem make use of the nonlinear interaction between two wavelengths within a semiconductor optical amplifier whereas more novel methods invoke terahertz-frequency electro-optic modulation and polaritons. Here we outline the principles and demonstrate the use of optically excited plasmons as a tunable frequency source that can be mixed with a laser frequency through Raman scattering. The scheme is all-optical and enables dynamical control of the output carrier wavelength simply by varying the power of a control laser.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC36-08GO28308
OSTI ID:
981979
Journal Information:
Nature Photonics, Vol. 1, Issue 12, December 2007
Country of Publication:
United States
Language:
English