skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Breaking through the Glass Ceiling: The Correlation Between the Self-Diffusivity in and Krypton Permeation through Deeply Supercooled Liquid Nanoscale Methanol Films

Journal Article · · Journal of Chemical Physics, 132(12):Art. No. 124502
DOI:https://doi.org/10.1063/1.3361664· OSTI ID:978954

Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures near (100-115 K) the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited ontop of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
978954
Report Number(s):
PNNL-SA-69782; JCPSA6; 24694; KC0301020; TRN: US201010%%300
Journal Information:
Journal of Chemical Physics, 132(12):Art. No. 124502, Vol. 132, Issue 12; ISSN 0021-9606
Country of Publication:
United States
Language:
English