skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of Electric Field and Biaxial Flexure on the Failure of Poled Lead Zirconate Titanate

Journal Article · · IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Reliable design of lead zirconate titanate (PZT) piezo stack actuators demands that a number of issues, including electromechanical coupling and ceramic strength-size scaling, be scrutinized. This study addresses those through the use of ball-on-ring (BoR) biaxial flexure strength tests of a PZT piezoelectric material that is concurrently subjected to an electric field. The Weibull strength distributions and fracture surfaces were examined. The mechanical failures were further analyzed in terms of internal stress, energy release rate, and domain-switching toughening. Both the sign and the magnitude of an electric field had a significant effect on the strength of poled PZT within the tested range. A surface flaw type with a depth of ~18 m was identified to be the strength limiter and responsible for the failure of the tested PZT under both mechanical and electromechanical loadings. With ~0.74 in the absence of electric field, the fracture toughness of the poled PZT was affected by an applied electric field just as the strength was affected. These results and observations have the potential to serve probabilistic reliability analysis and design optimization of multilayer PZT piezo actuators.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
978785
Journal Information:
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 55, Issue 12
Country of Publication:
United States
Language:
English