skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis

Journal Article · · Proceedings of the National Academy of Sciences of the United States of America
 [1];  [2];  [3];  [1];  [1];  [3];  [1];  [4];  [4];  [5];  [6];  [7];  [6];  [2];  [1];  [2];  [1];  [2];  [3];  [1]
  1. Lawrence Livermore National Laboratory (LLNL)
  2. Yersinia Research Unit, Institut Pasteur
  3. ORNL
  4. Michigan State University, East Lansing
  5. Rocky Mountain Laboratories, Hamilton, MT
  6. Institut National de la Sante etdela Recherche Medicale
  7. Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche

Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here, we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons with available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveal 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, to our knowledge, represent the only new genetic material in Y. pestis acquired since the the divergence from Y. pseudotuberculosis. In contrast, 149 other pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive insertion sequence-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of preexisting gene expression pathways, appear to be more important than acquisition of genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
978729
Journal Information:
Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, Issue 38; ISSN 0027-8424
Country of Publication:
United States
Language:
English