skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural relaxation and self-repair behavior in nano-scaled Zr-Cu metallic glass under cyclic loading: Molecular-dynamics simulations

Journal Article · · Intermetallics
 [1];  [1];  [1];  [1];  [2];  [3]
  1. National Sun Yat-Sen University, Taiwan
  2. ORNL
  3. University of Tennessee, Knoxville (UTK)

Bulk metallic glasses are generally regarded as highly brittle materials at room temperature, with deformation localized within a few principal shear bands. In this simulation work, it is demonstrated that when the Zr-Cu metallic glass is in a small size-scale, it can deform under cyclic loading in a semi-homogeneous manner without the occurrence of pronounced mature shear bands. Instead, the plastic deformation in simulated samples proceeds via the network-like shear-transition zones (STZs) by the reversible and irreversible structure-relaxations during cyclic loading. Dynamic recovery and reversible/irreversible structure rearrangements occur in the current model, along with annihilation/creation of excessive free volumes. This behavior would in-turn retard the damage growth of metallic glass. Current studies can help to understand the structural relaxation mechanism in metallic glass under loading. The results also imply that the brittle bulk metallic glasses can become ductile with the sample size being reduced. The application of metallic glasses in the form of thin film or nano pieces in micro-electro-mechanical systems (MEMS) could be promising.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
974622
Journal Information:
Intermetallics, Vol. 18, Issue 5; ISSN 0966-9795
Country of Publication:
United States
Language:
English