skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Concentration Independent Calibration of β-γ Coincidence Detector Using 131mXe and 133Xe

Journal Article · · Journal of Radioanalytical and Nuclear Chemistry, 282(3):755-759

Absolute efficiency calibration of radiometric detectors is frequently difficult and requires careful detector modeling and accurate knowledge of the radioactive source used. In the past we have calibrated the b-g coincidence detector of the Automated Radioxenon Sampler/Analyzer (ARSA) using a variety of sources and techniques which have proven to be less than desirable.[1] A superior technique has been developed that uses the conversion-electron (CE) and x-ray coincidence of 131mXe to provide a more accurate absolute gamma efficiency of the detector. The 131mXe is injected directly into the beta cell of the coincident counting system and no knowledge of absolute source strength is required. In addition, 133Xe is used to provide a second independent means to obtain the absolute efficiency calibration. These two data points provide the necessary information for calculating the detector efficiency and can be used in conjunction with other noble gas isotopes to completely characterize and calibrate the ARSA nuclear detector. In this paper we discuss the techniques and results that we have obtained.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
972960
Report Number(s):
PNNL-SA-65895; JRNCDM; NN2003000; TRN: US201005%%472
Journal Information:
Journal of Radioanalytical and Nuclear Chemistry, 282(3):755-759, Vol. 282, Issue 3; ISSN 0236-5731
Country of Publication:
United States
Language:
English