skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DCA++: A case for science driven application development for leadership computing platforms

Conference ·
OSTI ID:971219

Abstract. The DCA++ code was one of the early science applications that ran on jaguar at the National Center for Computational Sciences, and the rst application code to sustain a peta op/s under production conditions on a general-purpose supercomputer. The code implements a quantum cluster method with a Quantum Monte Carlo kernel to solve the 2D Hubbard model for high-temperature superconductivity. It is implemented in C++, making heavy use of the generic programming model. In this paper, we discuss how this code was developed, reaching scalability and high ef ciency on the world s fastest supercomputer in only a few years. We show how the use of generic concepts combined with systematic refactoring of codes is a better strategy for computational sciences than a comprehensive upfront design.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences (NCCS)
Sponsoring Organization:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
971219
Resource Relation:
Conference: SciDAC 2009, San Deigo, CA, USA, 20090614, 20090618
Country of Publication:
United States
Language:
English