skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of elevated CO{sub 2} on stem maintenance and construction respiration in Pinus ponderosa

Journal Article · · Bulletin of the Ecological Society of America
OSTI ID:95761
; ;  [1]
  1. Univ. of Illinois, Urbana, IL (United States)

We measured woody tissue respiration on stems of 4-year-old Pinus ponderosa growing under ambient (350 ppm) and twice ambient (700 ppm) atmospheric CO{sub 2} in open top chambers located at the Institute of Forest Genetics in Placerville, CA. Mean daily respiration rate per unit volume of wood was greater in trees growing under the elevated (700 ppm) treatment (46.75 vs 40.45 mol m{sup -3} d{sup -1}). This difference was due to a higher Q{sub 10} of respiration in the elevated (Q{sub 10}=2.20) versus the ambient (Q{sub 10}=1.67) treatment. The higher Q{sub 10} and CO{sub 2} efflux rate were not due to differences in phenology but may reflect a difference in demand for metabolic energy. In contrast to results seen in leaves growing under elevated atmospheric CO{sub 2} analysis of tissue construction costs suggests no difference in wood composition between treatments. Estimates of growth respiration calculated from construction costs also did not differ. Under future predicted atmospheric conditions, changes in the maintenance respiration of woody tissue may lead to an increase in the respiration component of whole plant carbon budgets of Pinus ponderosa.

OSTI ID:
95761
Report Number(s):
CONF-9507129-; ISSN 0012-9623; TRN: 95:004728-0026
Journal Information:
Bulletin of the Ecological Society of America, Vol. 76, Issue 2; Conference: 80. anniversary of the transdisciplinary nature of ecology, Snowbird, UT (United States), 30 Jul - 3 Aug 1995; Other Information: PBD: Jun 1995
Country of Publication:
United States
Language:
English