skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Predicting equilibrium vegetation responses to global climate change using coupled biogeography and ecosystem models

Journal Article · · Bulletin of the Ecological Society of America
OSTI ID:95751
;  [1]
  1. Pacific Northwest Research Station, Corvallis, OR (United States)

Much current uncertainty surrounding the sensitivity to climatic change of natural vegetation in the USA is related to widely-varying approaches taken in constructing simulation models. Our goal was to reduce this uncertainty by coupling the biogeography model MAPSS (Mapped Atmosphere-Plant-Soil System) with critical ecosystem processes as simulated by TEM (Terrestrial Ecosystem Model). MAPSS predicts changes in leaf-area index (LAI) and vegetation biome boundaries using a site water balance model in conjunction with a physiologically-conceived rule-base model. On the other hand, TEM simulates equilibrium fluxes and pools of carbon (C) and nitrogen (N) such as net primary productivity (NPP) and available N without redistributing vegetation. In the coupled version of MAPSS presented here, these hydrological and biogeochemical processes are mutually constrained. For example, N availability may limit maximum LAI, and therefore, site water balance. Alternatively, actual evapotranspiration and soil water availability may modulate NPP via photosynthesis and net N mineralization. Initial results with this TEM-coupled version of MAPSS reveal significantly different patterns of NPP and vegetation distribution for the conterminous USA compared to those from uncoupled models, particularly at thermal and hydric extremes.

OSTI ID:
95751
Report Number(s):
CONF-9507129-; ISSN 0012-9623; TRN: 95:004728-0016
Journal Information:
Bulletin of the Ecological Society of America, Vol. 76, Issue 2; Conference: 80. anniversary of the transdisciplinary nature of ecology, Snowbird, UT (United States), 30 Jul - 3 Aug 1995; Other Information: PBD: Jun 1995
Country of Publication:
United States
Language:
English